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ABSTRACT

Atmospheric turbulence severely degrades images of astronomical objects.

Providing images that accurately reflect the true nature of these objects is essential

to their understanding. Several object recovery techniques exist within the field of

speckle imaging that produce accurate representations of astronomical objects. This

thesis provides an in-depth comparison of two such techniques, Knox-Thompson and

triple-correlation.

Through computer simulation, this thesis accurately compares the abilities of

both recovery techniques to enhance turbulence degraded objects by exploiting the

diffraction-limited information contained in short exposure, or "speckle", images. The

simulation produced these images by creating an object and several phase screens

which simulated the effects of turbulence. Together, the object and the appropriate

quantity of phase screens yielded the required short exposure images. Application

of the Knox-Thompson and triple-correlation techniques to identical sets of these

degraded images produced the resulting reconstructed objects, their signal-to-noise

ratios and their azimuthal RMS phase errors. Comparison of these three factors over

several imaging criteria concluded that the superior phase recovery technique was

triple-correlation. A-e3 ,
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I. INTRODUCTION

Scientific research of astronomical imagery has been continual since the

invention of the telescope at the beginning of the seventeenth century. Initially, the

limiting factor on astronomical image resolution was the quality and size of the

telescope optics. As technology progressed, larger telescopes improved to the point

where atmospheric turbulence (hereafter, simply turbulence) became the limiting

factor on image resolution.

Turbulence severely limits the resolution of long exposure images produced by

ground-based telescope imaging systems. Removal of turbulence corruption to

improve image resolution is an area of extensive research. Optimal telescope site

location minimized the effect of turbulence, but did not produce the near diffraction-

limited images desired. Removal of turbulence distortion occurred through the

development of statistical methods, called speckle imaging techniques, that produced

near diffraction-limited resolution. The basis of these techniques was the assumption

that turbulence remains essentially stationary during a short exposure image of the

desired object. Though distorted, these short exposure images retain diffraction-

limited information.

Determination of the object's power and phase spectra are separate operations.

Although the power spectrum can be directly averaged while retaining diffraction-

limited information, the phase spectrum cannot. Instead, either the cross-spectrum
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(the Knox-Thompson method) or the bispectrum (the triple-correlation method) are

averaged because diffraction-limited information is retained. Then the phase

spectrum is recovered from either the cross-spectrum or the bispertrum. The

combination of the power and phase spectra generates the object's Fourier spectr am

which, when inverse Fourier transformed, provides the recovered image.

Several factors affect the quality of image reconstruction. These factors

influence both phase recovery techniques and include the amount of turbulence, the

size of the telescope, and the light level of the object. The randomness of turbulence

and the effect of random photon noise, make exact image reconstruction impossible,

however, increasing the number of short-exposure images in the averaging process

recovers a better image. This thesis compares the Knox-Thompson and triple-

correlation phase recovery techniques under several different imaging conditions to

determine their ability to improve the signal-to-noise ratio (SNR) of a degraded

object.
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H. BACKGROUND

A. RESOLUTION

In the image reconstruction process, resolution determines image quality.

Resolution is defined as:

the process or capability of making distinguishable the individual parts of an
object, closely adjacent optical images, or sources of light [Ref. 1].

From a Fourier optics perspective, resolution is proportional to the high spatial

frequency content of the imaging system. The standard for resolution is based on the

image of two point objects (binary star) viewed through a telescope. The image

consists of two overlapping Airy patterns with intensity

I(,) = 1(0) (2J()) 2  (2.1)

where J1 (*) is the first order Bessel function and 4, is the normalized spatial

frequency. The separation of the two first order fringes of the two Airy patterns

constitutes the so-called Rayleigh limit of image resolution

A = 1.22 • (2.2)

D

(in radians) for a circular aperture where I is the wavelength of light and D is the

telescope diameter [Ref. 2]. Telescope imperfections and turbulence prevent

attainment of the theoretical limit for large apertures. Speckle imaging techniques

3



remove distortions due to these factors and produce images with resolution near the

theoretical limit.

B. TURBULENCE EFFECTS

Turbulence produces temporal and spatial variations in atmospheric density,

temperature, and index of refraction. The turbulence in the atmosphere perturbs an

image, such as an Airy pattern from a point object (star), producing an extended

image referred to as a seeing disk. The perturbation randomizes the electromagnetic

phase front of the object. This randomization produces angular spreading, image

wandering about its centroid, and scintillation or "twinkling'. Turbulence effectively

reduces the telescope's resolving power by randomly attenuating the high spatial

frequencies.

C. HISTORICAL PERSPECTIVE

Until roughly 1970, attempts at solving the turbulence distortion problem were

limited to finding the ideal telescope site. Generally, the sites were high in elevation

and at locations regarded as having long periods of atmospheric stability. Even with

great care in site selection, the typical angular resolution obtained was approximately

one arcsecond, the maximum resolution attainable with a 12 centimeter telescope.

Although phase distortions from turbulence constrained resolution, construction of

large diameter telescopes provided enhanced light gathering capability.

In 1970, a technique developed by Labeyrie enabled recovery of near

diffraction-limited image Fourier moduli [Ref. 3]. The concept that a long

4



exposure image was blurred by turbulence fluctuations due to phase spectrum

blurring and not power spectrum blurring, provided the basis of Labeyrie's technique.

Labeyrie determined that a short exposure image, about 10 milliseconds, would freeze

the disturbance yet still contain near diffraction-limited information of the object.

Taking many short exposure images, calculating their power spectra, then averaging,

enabled a diffraction-limited estimate of the object's power spectrum to be made.

Labeyrie's technique allowed high resolution measurements of binary star separations.

However, lack of object phase information prevented faithful image reconstruction.

In 1974 Knox and Thompson developed a technique for retrieving the object's

phase spectrum [Ref. 4]. The method uses the Knox-Thompson (KT)

algorithm to provide an estimate of the object's phase spectrum using the same short

exposure images required for the estimate of the object's power spectrum. The KT

method calculates the average cross-spectrum of the object in Fourier space to

determine the object's phase spectrum. Calculation of the cross-spectrum involves

determining the average correlation of spatial frequency pairs displaced from each

other by a small frequency differential. The average provides a statistical phase

difference approximation from which the object's phase spectrum is obtained.

In 1983 Lohmann, Weigelt, and Wirnitzer developed another technique for

retrieving the object's phase spectrum [Ref. 5]. This method, referred to as

triple-correlation (TC), also uses short exposure images to estimate the object's phase

spectrum. The TC method calculates the average bispectrum of the object in Fourier

space to determine the object's phase spectrum. Calculation of the bispectrum

5



involves determining the average of a third order correlation that consists of a

frequency point, a point shifted by an offset, and a difference term. As with the KT

technique, the average provides a statistical phase difference approximation from

which the object's phase spectrum is obtained.

Either the KT or the TC technique determines the object's phase spectrum

which is necessary to produce accurate recovered images. Combining the

reconstructed power spectrum and phase spectrum produces the reconstructed

Fourier spectrum, which when Fourier transformed, yields the recovered image.

6



M. THEORY

A. TURBULENCE MODEL

Both the KT and the TC techniques utilize short exposure images to recover

the object's phase spectrum. A method developed by Tyler and Fried of the Optical

Sciences Company, simulates turbulence to produce the short exposure images

required to test these recovery techniques [Ref. 6]. This method requires the

following three assumptions: [Ref. 7]

1. Turbulence is represented by a single phase screen in the pupil plane of the
telescope.

2. Turbulence is isoplanatic, that is, the distortion from turbulence and the
imaging system is considered shift invariant over the entire image plane.

3. The images are quasi-monochromatic.

With these assumptions, a single short exposure image becomes a convolution in

image space

i(0) o(2) * S(1) (3.1)

where i (2) is the short exposure image intensity, o (2) the object intensity, and

s (2) is the instantaneous point spread function. The vector 2 represents the two-

dimensional orthogonal spatial coordinates x and y. Using the convolution theorem,

equation (3.1), becomes a product in Fourier space

7



I(W) = O(it) " S(W) , (3.2)

where I (W) is the Fourier transform of the short exposure image intensity, 0 (ii)

is the Fourier transform of the object intensity, and S (l) is the instantaneous

incoherent transfer function. The vector El represents the two-dimensional

orthogonal spatial frequency coordinates u and v.

The point spread function, s (2) , and thereby the incoherent transfer function,

S(0-), represent distortions from both turbulence and the imaging system. The

assumption of stationary turbulence is accurate for short exposure images.

Consequently, an instantaneous distribution of random phases (phase screen)

approximates the instantaneous distortion of an image by turbulence. An array of

random numbers filtered by a power spectral density function and corrected for low

spatial frequency under-representation can simulate this phase screen [Ref. 6].

Therefore,

H(a) = P(XF) eI' (XU) (3.3)

represents the instantaneous coherent transfer function, where P (IFV) is the

transfer function of the telescope, el* (1O is the instantaneous turbulence phase

screen, F is the focal length of the telescope, and I is the wavelength of light [Ref.

7]. Finally, the auto-correlation of the coherent transfer function, H(E),

S(a) = H-(O) * H() . (3.4)

yields the instantaneous incoherent transfer function required for equation (3.2).

8



B. PHASE SCREEN PRODUCTION

Three common techniques for producing turbulence phase screens exist. One

technique, the Fast-Fourier-transform (FFT) method, creates an array of filtered

white noise and inverse Fourier transforms the array to real space providing the

phase screen. A second technique, referred to as the Karhunen-Loeve (KL)

expansion method, uses the KL expansion with a basis of Zemike polynomials to

represent the phase screen. The third, hybrid, technique referred to as the

Karhunen-Loeve-Fast-Fourier-Transform (KLFFT) method, combines the best

properties of both techniques and manufactures phase screens which most accurately

represent turbulence distortions.

1. Fast-Fourier-Transform Method

The FFT method provides a rapid means of generating a phase screen.

Initially, creation of a square array of Gaussian-distributed random numbers of unity

variance provides a representation of the phase over the entire aperture of the

imaging system being evaluated. The array amplitudes are filtered in Fourier space

radially outward from the origin by the square root of the Kolmogorov power spectral

density function

f,,(i) = 0.1517rt/6 I i 1-11/6 (3.5)

where I i I is the radial distance from the origin in frequency units, and r0 is the

coherence diameter [Ref 7]. The origin is set to zero removing the constant (DC)

term from the phase screen before applying the inverse Fourier transform. Two

9



phase screens result since complex numbers in the array consist of real and imaginary

parts which are entirely distinct and statistically independent.

Though the FF method generates phase screens rapidly, it has

deficiencies. The FFT uses a finite number of discrete points, and consequently, high

and low spatial frequency cutoff occurs. High spatial frequency cutoff is minor since

most of the wave front error induced by turbulence is of low spatial frequency. Low

spatial frequency cutoff is more serious as it induces under-representation of low

spatial frequencies producing wave front tilt, or centroid position errors. Therefore,

the associated structure function of the FFT-produced phase screen does not

completely represent the 5/3 power law turbulence structure function.

2. Karhunen-Loeve Expansion Method

The KL expansion method provides an accurate method of generating a

phase screen. Random phases associated with turbulence can be expanded in terms

of a series of orthogonal functions £'k ,

r(t) = rkfk(t) . (3.6)

The expansion coefficients rk, are uncorrelated Gaussian random variables which

represent turbulence statistics. The orthogonal functions provide the proper spatial

dependence, thereby allowing the random phase to be evaluated anywhere within the

aperture. The above expansion is referred to as the KL expansion. For a finite value

of j, the KL expansion is the optimum basis whose eigenvalues represent the energy

10



content of the expansion coefficients, "k ( t) , and the total energy is the sum of these

eigenvalues. [Ref. 8].

Zernike expansion coefficients, for a random phase screen, are Gaussian

random variables. Unfortunately, these expansion coefficients are correlated and

cannot be used as a KL basis set directly. However, the Zernike covariance matrix

(the matrix of expansion coefficients) is useful in determining the KL expansion for

turbulence.

Three properties justify the use of Zernike polynomials as a basis set for

the KL expansion to determine wave front turbulence. Use of the Zernike

covariance matrix provides the necessary random variables required for the phase

screen. Additionally, each eigenvector of the Zernike covariance matrix is the

representation of the KL function in terms of the Zernike polynomials. Further, each

eigenvalue of the Zernike covariance matrix is the variance associated with the

corresponding KL expansion coefficient. Wave front error induced by turbulence is

an outcome of the these properties. [Ref. 6]

The eigenvectors and the corresponding eigenvalues of the normalized

Zernike covariance matrix are found which obey the relation

Ce = Iiei , (3.7)

where C is the covariance matrix, e, is the i I" eigenvector and 1. is the

corresponding normalized eigenvalue. The eigenvectors are normalized so each

11



element of the eigenvector indicates the amount of the corresponding Zernike

polynomial that is contained in the i I KL function expressed as

K (p) - E peZ(p) , (3.8)
p

where K, (p) is the i t KL function, ejp is the p e component of theit"

eigenvector, and Z., ( p) is the p hZernike polynomial. Hence, the random wave

front error produced by turbulence, 4 (f), is

*(2) = ,¥rKx(D--.)• (3.9)

where y. is a set of Gaussian-distributed random numbers, Y is the distance from

the origin, and D is the telescope diameter.

Though the KL expansion method is accurate, deficiencies exist, and care

must be taken in its use. Calculating wave front distortion using the KL method

requires an enormously large number of Zernike polynomials to achieve enough

accuracy. The required number is proportional to (Dir0 ) 
2 . Additionally, numerical

inaccuracies exist in evaluating Zernike polynomials of high radial order. Therefore,

to achieve the accuracy desired, avoidance of Zernike polynomials of high radial

order is necessary.

3. Karhunen-Loeve-Fast-Fourier-Transform Method

The KLFFT method combines the fast computational speed of the FFT

method with the optimum low spatial frequency representation of the KL functions.

This technique requires a phase screen to be developed by the FFT method. The

12



first five KL functions are produced and applied to this phase screen to compensate

for the under-representation of low spatial frequencies. With this compensation, this

combined technique closely represents atmospheric turbulence.

The KFFT method is quite powerful. Since only five KL functions are

produced and applied, the total number of operations per phase screen is

approximately double that of the FF method alone. Therefore, this phase screen

production technique is relatively fast. [Ref. 6]

C. IMAGE RECOVERY

The image recovery techniques represent methods for providing the

reconstructed image from a turbulence-distorted object by utilizing several short

exposure images of the object and a nearby star. The Labeyrie technique recovers

the object's power spectrum [Ref. 3]. The power spectrum provides the modulus of

the Fourier transform of the object, the first part of the complex quantity required.

Both the KT and TC techniques recover the object's phase spectrum. Inverse

Fourier transforming the product of the modulus and the phase provides a

reconstructed image of the original object.

1. Power Spectrum Recovery

Equation (3.2) represents the image intensity for a single short exposure

image in Fourier space. The time average power spectrum of several short exposure

images in Fourier space is

13



<l1(l) l2> = IO(i)1 2 . <IS(u!)12> (3.10)

where the term on the left is the time average power spectrum of the image, the first

term on the right is the object's power spectrum and the second term on the right is

the incoherent transfer function. Several images of a star under similar imaging

conditions as the object determine this transfer function, which is the time average

of the instantaneous transfer functions. The object and the star need not be in the

same isoplanatic patch as long as the second order statistics of the transfer function

are the same for both sets of exposures [Ref. 9]. Solving for the object power

spectrum, equation (3.10) becomes

1qs(ifl12 <IS (il) 12> (3.11)

which recovers the object's Fourier modulus.

2. Phase Spectrum Recovery

Both the KT and TC phase recovery techniques recover the object's phase

spectrum by using the cross-spectrum and bispectrum averaging processes

respectively. To recover the object's phase spectrum, the KT technique calculates the

average cross-spectrum while the TC technique calculates the average bispectrum.

a. Technique Analysis

The KT technique is the simpler of the two phase recovery methods.

Determining the cross-spectrum is at the heart this algorithm. The cross-spectrum

is defined as the product of two quantities in Fourier space: an array point and the

14



complex conjugate of an array point which is shifted, in frequency, from the original

array point by a small offset, A U. The cross-spectrum, CS (it) , is

CS(Ul) =X(f i)*(Q+AZ) , (3.12)

where X (it) is the array point and X (fW + A U) is the complex conjugate of the array

point shifted by the offset vector A U-.

The TC technique is a more complicated form of phase recovery. The

bispectrum is defined as the produ(.t of 'hree quantities in Fourier space: an array

point, the complex conjugate of an array point which is shifted, in frequency, from

the original array point by an offset, and an array point which is a function of the

offset only. The bispectrum, BS (f), is

BS(il) = X(il) • X*(ii+Ail) X(Ail) , (3.13)

where X (A i) is the array point which is a function of offset only and the other

terms are the same as defined for equation (3.12).

From equation (3.2), the average cross-spectrum is

<I(E) • I* (G+A) > =

[OUD ) 0* W+Afi) I - <SU) S* +Ail) > (3.14)

where the first term on the right is the object's cross-spectrum and the second term

on the right is the average incoherent transfer function cross-spectrum. The average

bispectrum is

15



[o(a) • o" (+A1l) • O(Aa)] (3.15)

<S(a) • SO(a+Aa) s(Aa)>

where the first term on the right is the object's bispectrum and the second term on

the right is the average incoherent transfer function bispectrum.

The average incoherent transfer function cross-spectrum and

bispectrum contain distortions from both the turbulence and the imaging system. The

average phases resulting from these calculations for turbulence are zero.

Imperfections in the imaging system produce phases which are negligible for both the

cross-spectrum [Ref. 10] and the bispectrum [Ref. 51 calculations. Therefore,

the average cross-spectrum and bispectrum of the incoherent transfer function is

assumed to be unity. Equations (3.14) and (3.15) reduce to simpler forms

0(il) - 0 (+Aa) - <"(a) • 1" (+Ai) > , (3.16)

and

0( ) 0(a+AM 0(Afl) =

Ia) * a+Ai) IX(Ail)> (3.17)

b. Phasor Spectrum Revery

Direct recovery of the object's phase spectrum is not possible since

the cross-spectrum and bispectrum phases are only known modulo 2w. The recursion

algorithm fails when the cross-spectrum or bispectrum phase estimates are not equal

to their principle arguments if multiple estimates of a single object phase spectrum

16



point are used. To avoid this problem without losing information, the reconstructed

object's phasor spectrum is determined instead. The recovery process will henceforth

be referred to as phasor reconstruction.

An arbitrary complex number N in phasor notation is

N = I NI e1* , (3.18)

where I N I is the modulus of the complex number and e14 is the phasor in which 40

represents the phase of the complex number. Solving for the phasor, equation (3.18)

becomes

= Np - N (3.19)

where the subscript ph denotes phasor. Therefore, solving for the phasors of

equations (3.16) and (3.17) by dividing each by their respective moduli gives

O (a)- O (+AQ) = I;(a,AQ) , (3.20)

and

Op( ). O; (W+AE). Oph(Aa) = lla,Aa) , (3.21)

where

I , )--I<~ "  I+A)I (U) ( I(+Ail) > (3.22)

1<1(Ua) - I* +A1) >I

and

17 <I(G)- 1"'01+A6) • I(A )>

I(<,IA(U)) = I *W'+'( (+A) 'I(Aa) " (3.23)
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"he terms X" (a, A i) and ,' ( , A ZI) are four-dimensional quantities, since

several offset values may be used to determine estimates of the object's cross-

spectrum and bispectrum. Solving for the offset-shifted object phasor and applying

the complex conjugate operator to both sides, equations (3.20) and (3.21) become

O( A ) (3.24)

and

o1(h+A = ("0 ; Aa) (3.25)

Equations (3.24) and (3.25) provide the phasor spectrum necessary for image

reconstruction. However, use of these equations is limited to infinite photon count,

short exposure images which are unrealistic and useful for computer simulations only.

c. Photon Noise effects

Compensating for photon noise allows image reconstruction from low

photon count images, though more of these images are required in the process to

resolve the object. During the recovery process of low light-level objects, the

introduction of photon bias occurs. This bias corresponds to the cross-spectrum or

bispectrum averaging of photon events with themselves and contributes no useful

information to the average. With the bias removed, equations (3.11) and (3.12)

become
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CS (I) = X f) X( A( +Af) - *(A 1) , (326)

and

BS(6) = X(I) - X(W+A-) X(A il) + 2NP -
IX() 12+ IX(i+Ail) 12 - Ix(Ai)12 , (3.27)

where -Xr (A i) removes the cross-spectrum photon noise bias, -IX (ii) 12,

-JX(I + Ai) 12, and -IX(Ail)12 remove the bispectrum photon noise bias, and N9

is the photon count [Ref. 11]. Therefore, for realistic image reconstruction,

equations (3.24) and (3.25) become

ob= ((a+s(AAa)) ' (3.28)

and

,l W 1+ A (,AI))" (3.29)

where

l AS ( ) <l(U-) • I (i+AfI) - I* (AI) >
I (, <l(fi) • I(i+Ai) - is(A-) >J (3.30)

and

17' ZM (i, A a)=

<1(i) . I(j+Aj) - II(a)12 - I(j+Auj)l2 - II(Ai)12 + 21V> (3.31)

<I(i) . I*(i+A) - I.(a)12 - II(u+Ai) - - II(AA)1 2 + 2N9,>I
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Equations (3.28) and (3.29), allow realistic image reconstruction.

d. Phasor Spectrn Wekhting

Phasor spectrum weighting provides a means for enhancing desired

phasor estimates, increasing reconstructed image quality. Both phasor recovery

techniques benefit from phasor spectrum weighting. Weighting techniques suppress

higher frequencies and enhance the reconstructed image's SNR. The method

presented is the weighted least squares estimation approach. Matson showed that

this method obtained the best results of four approaches analyzed [Ref. 12].

The method weights the object's phasor spectrum with the SNR determined from the

variance of the cross-spectrum or bispectrum as follows:

J3 (Re[SS ( ) ] - (Re[<SS( 0)>]})

U2 (Re(SS(L)) - ; n (3.32)

S ) (rm[SS,(E)2] - {!m[<SS(il) >112

a 2 (IM [SS (ff) )n (3.33)

n-I

a = ,o 2(Re[SS(fi)l]) o2 (Im[SS(fi) ]) (3.34)

SVR = I<SS(a) >1 . r (3.35)

where SS (l) represents either the cross-spectrum or the bispectrum.
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e. Recoey Process

Determination of the object's phasor spectrum is afforded by the

recursive method. An estimate of the image cross-spectrum or bispectrum for each

short exposure image spectrum element provides the necessary information to

determine the object's phasor spectrum. The estimates for each array element are

determined recursively, from the origin radially outward to the diffraction limit of the

imaging system. This method capitalizes on the inherent property of the phasor

spectrum SNR which decreases radially as a function of increasing spatial frequency.

These estimates are averaged over all the short exposure images and are weighted

utilizing equation (3.35). This process results in the object's phasor array determined

by equations (3.28) or (3.29). Once the reconstructed phasor array is found in this

manner, it is multiplied by the square root of the power spectrum provided by

equation (3.11). Inverse Fourier transforming this spectrum to image space provides

the final reconstructed image.

D. PHASOR RECOVERY TECHNIQUE COMPARISON

There are several distinctions between the two phasor recovery techniques,

aside from the obvious differences of equations (3.28) and (3.29). Since the recursion

technique utilizes all the values from unity to the offset value in the averaging

process, the greater the offset, the better the reconstructed image. For the KT

technique, the modulus of the offset vector, I dil 1, is restricted to be less than the

seeing limit, x,/. , whereas for the TC technique, the offset is unlimited. This
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restriction allows the TC technique to surpass the KT technique in image quality by

using a greater offset that includes more phase information. [Ref. 13]

Shift invariance becomes important for low photon count images. The KT

technique is not shift invariant and requires shifting of the degraded short exposure

images to the center of the image array by,

SXj I-(X)
I W - ,(3.36)

and

=J - -riy ( Y ( 3 .3 7 )

prior to the recovery process. Image centroiding minimizes linear phase ramping in

Fourier space, however, centroiding accuracy decreases with lower light levels

resulting from the randomness of the image. Consequently, since the KT technique

is not shift invariant, it performs poorly for low photon count images because the

centroiding accuracy is decreased. The TC technique is shift invariant, eliminating

the centroiding requirement. Since the TC technique does not require centroiding,

the inaccuracy of the centroiding process at low light levels does not enter into TC

image reconstruction. [Ref. 11]
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E SUMMARY

The short exposure image is the key to effective image recovery. The high

spatial frequencies within the short exposure image contain diffraction-limited

information, though the object's phase spectrum is randomized. Recovery of the

phasor spectrum provides the information required for true image reconstruction.

Three techniques for image reconstruction provide the recovered image. The

Labeyrie technique recovered the object's power spectrum. Both the Knox-

Thompson and the Triple-Correlation techniques recovered the object's phasor

spectrum. Each phasor recovery technique yielded an independent array of phasors

that, when combined with their corresponding power spectrum and inverse Fourier

transformed, produced reconstructed images for comparison. Simulation of

turbulence-degraded short exposure images by the Karhunen-Loeve-Fast-Fourier-

Transform method allowed computer simulated comparison.
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IV. COMPUTER SIMULATION

A. COMPUTER REQUIREMENTS

Turbulence simulation and image recovery processing, by their nature, require

enormous amounts of calculations. The simulation presented in this thesis creates

an object and a turbulence phase screen. The phase screen distorts the object

producing a short exposure image. Several of these short exposure images are

utilized in the image reconstruction process by using either the KT or TC recovery

techniques. The phase screens and short exposure images are presented in the form

of two-dimensional square arrays. The arrays produced are of dimension 64 x 64

consisting of 4096 elements. Several operations are performed on each element in

these arrays throughout the entire simulation process. As a result, the requirement

arose for a fast computer to process the arrays and for a large random access

memory (RAM) to store them during the process.

A personal computer was used for the simulation process and the data

reduction. The computer, a Compaq Deskpro 80386/20 with 16 megabytes of RAM

and a Weitek 1167 coprocessor, provided ample speed and convenience as long as

array sizes did not exceed 64 x 64. Standard Fortran 77 was the language used

throughout the simulation. A Microway 32 bit NDP Fortran-386 compiler provided

the speed, precision, and array processing capabilities required for the simulation.

The construction of each short exposure image and its subsequent cross-spectrum or
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bispectrum estimation, required approximately 28 to 34 seconds to process with this

computer-compiler combination, depending on the imaging parameters (coherence

length, photon count, short exposure image quantity). Surfer and Grapher software

from Golden Software provided plots of image data, phasor spectrum SNR

comparison data, and azimuthal RMS phase error (henceforth, simply phase error)

comparison.

B. SIMULATION PROCESS

The simulation process compared the KT and TC phasor recovery techniques.

The necessity for two programs, one using the KT technique and the other the TC

technique, arose from RAM limitations. To ensure accuracy, both programs were

identical except for the individual phasor recovery subroutines. Additionally, the

imaging parameters and the random number seeds were identical for each

comparison run to ensure production of the same phase screens and, hence, the same

short exposure images. With identical short exposure images and object power

spectra, the only distinguishable difference between reconstructed images resulted

from the utilization of different phasor recovery techniques.

The simulation utilized the speckle imaging procedure. This procedure involved

the use of several short exposures, from 25 to 1600, to remove the effects of

turbulence by means of an averaging process. This process determined the object's

power and phasor spectra by calculating the autocorrelation and the cross-spectrum

or bispectrum respectively, for each short exposure image. At the end, these values
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were averaged and combined, providing the object's Fourier spectrum. A separate

program filtered and transformed this spectrum to image space, yielding the

recovered image. The simulation process is shown in Figure 4.1.

1. Object Production

Construction of an object that provided adequate detail to test the

resolution of the two phasor recovery techniques was essential. Three objects were

designed to compare the two techniques over several different image parameters.

These objects were created, scaled, transformed to Fourier space, and normalized.

a. Object Creation

The first step in the process created the object. The option to

construct one of three objects was provided. The first object resembled a finite-

dimensional astronomical body centered in the array. The body was a convolution

of a Gaussian function and a circular pupil function, giving it the appearance of a

smooth planet. Since phasor spectrum SNR declines radially with spatial frequency,

round objects provide a less than ideal choice for image recovery comparison.

However, increasing the detail on the body provided a means to test the resolution

capabilities of the two phasor recovery techniques. Seven Gaussian functions of

various size and depths at random locations on the body provided craters. These

craters gave the body the appearance of an asteroid. The randomness of the craters

on the asteroid provided the additional detail to test resolution.
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Figure 4.1 Simulation Process
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The second object resembled a binary star. This object consisted of two

delta functions placed symmetrically about the center. Initiallythis object provided

the ability to troubleshoot the program since the phase spectrum of an equal intensity

binary star involves a square wave pattern that was easily recognizable. After the

completion of troubleshooting, the binary star allowed a test of the ability of the

phasor recovery techniques to resolve point objects at very low photon counts. One

point had twice the intensity of the other to reduce any ambiguities brought about by

symmetry.

The third object resembled a star. The object consisted of a delta

function at the center of the array. The short exposure image of a point source yields

the instantaneous incoherent transfer function representing distortion from the

turbulence and the imaging system. The transfer function allowed recovery of the

object's power spectrum.

b. Object Scaling

The object had to be scaled before use. Object scaling assured that

the imaging parameters retained complete frequency information within the given

array size and ensured that the size of the object was within acceptable limits. One

such parameter was r0, the coherence length, which was a measure of the amount of

turbulence present in the atmosphere [Ref. 14]. For the simulation, values

of 0.206 and 0.103 meters were chosen. Another parameter, JIU, was the offset

value. This value represented the number of pixels (array elements), in Fourier

space, contained within the coherence length. The offset maximized the averaging

28



of cross-spectrum and bispectrum while preventing loss of high frequency information.

Offset values of two and four were chosen for the simulation. The corresponding

width of each pixel in terms of coherence length was determined and divided into the

telescope diameter to calculate the number of pixels retained by this telescope under

the conditions of the above parameters. The number of pixels is synonymous with

the frequency cutoff of the diffraction-limited telescope incoherent transfer function

(D/;.). The image array size limits the frequency cutoff value to

Sn-

fC > "P -2 , (4.1)

where f, is the frequency cutoff and n is the array size. If the frequency cutoff is

too large, frequency information is lost.

After constraining the imaging parameters, the field of view and the object

size were ascertained. The field of view (FOV) is equivalent to the reciprocal of the

fundamental spatial frequency

FOV = Jill (.K ' (4.2)

where (I/r 0 ) is the seeing disk. In general, the allowance of one seeing disk width

between the object and each side of the array provided for object distortion effects.

The size of the asteroid was then maximized to provide the most visual detail while

satisfying the above criteria. Verification that the binary star and the star obeyed the

above criteria was sufficient for those objects.
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c. Fourier Spectrum Derminaton

Production of phase screens occurred in Fourier space, while object

production transpired in image space. Proper image production required

transformation to frequency space. A two-dimensional Fast-Fourier-transform (2D-

FFT) algorithm transformed the object to Fourier space. The FFT provides a fast

and accurate method of transforming a discrete function to Fourier space. The 2D-

FFT employs a 1D-FFT provided by Gonzalez and Wintz [Ref. 15]. This

1D-FFT determines the discrete Fourier transform of a complex one-dimensional

array of numbers. The 2D-FFT simply calls the 1D-FFT for each row then each

column of the two-dimensional object array. Testing of the 2D-FFT by transforming

a normalized pupil function then inverse transforming enabled comparison between

the results and the original function. With double precision complex numbers, the

2D-FFT provided accuracy to ten significant figures. In addition to determining the

object's Fourier spectrum, this 2D-FFT provided the means for transformation, from

image space to Fourier space and back, extensively throughout the simulation.

d. Fourier Spectrum Normalization

Normalization of the object's Fourier spectrum produced the correct

number of photons in the short exposure image. In reality, each short exposure

image furnishes a photon count, however for the simulation, the some value was

chosen for all short exposures used for each image reconstruction run. Dividing the

object's Fourier spectrum by the photon count normalized the spectrum. Since the

phase map was normalized by its DC value, the photon count was the same for the
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object and for the short exposure image. The normalization was important for

Poisson noise generation introduced later in the process.

2. Turbulence Phase Screen Production

Construction of a turbulence phase screen that correctly resembled true

atmospheric turbulence allowed accurate phasor recovery technique comparison.

Testing the KLFFT method of phase screen production showed it represented the

actual 5/3 power law structure function closel) [Ref. 16]. Therefore, this

method was adapted to produce the phase screens in this simulation.

a. Gaussian Random Number Array

Each phase screen involved an array of random numbers. The

random numbers represented the random phases produced by turbulence. A

Gaussian distributed random number generator, provided by the subroutine Gauss,

produced the required random numbers that represented the randomness of

turbulence statistics.

b. Filter Function

The simulation used a filter function that represented the square root

of the Kolmogorov power spectral density function, equation (3.5). This function

represented turbulence statistics and filtered each array of Gaussian distributed

random numbers to provide the turbulence structure function. The resulting array

elements 40j, when put in terms of the Rytov approximation, modelled the 5/3
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power law structure function, and hence provided a model for turbulence, though the

low spatial frequencies were under-represented.

c. Kariwnen-Loee Functions

The simulation used the first five KL functions. Each filtered array

was inverse Fourier transformed and then the five KL functions were applied in

image space to compensate for the low spatial frequency under-representation. This

application involved more than simple multiplication. The inner product of the KL

functions and the filtered array provided scalars which expressed the amount of each

individual KL function contained in the array. These amounts were subtracted from

the array. The technique involved random numbers with variances equal to the

eigenvalues associated with their respective KL function. Multiplying the random

numbers by their corresponding KL functions and adding the result to the array gave

the corrected phase screen. The resulting array elements , when put interms

of the Rytov approximation, accurately depicted the 5/3 power law structure function.

An effect of the KLFFT method was the inclusion of tilt in the short

exposure image. An option was given in the simulation which allowed the removal

of tilt by setting the first two KL functions to zero. This option allowed phasor

recovery without the presence of tilt and was utilized as a criterion for comparison

of the phase recovery techniques.
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d. Incoherent Transfer Function

Use of the Rytov approximation determined the incoherent transfer

function of the turbulence and imaging system. The Rytov approximation,

A" e ' 1 , (4.3)

provides the coherent transfer function of the turbulence and imaging system, whereA

represents the amplitude (set to one) and 4. represents the realization of the phase

screen determined above. Calculating the autocorrelation of the coherent transfer

function produced the incoherent transfer function. This calculation first required

multiplying the phase screen array produced by the Rytov approximation by the pupil

function of the telescope. Squaring the modulus of the Fourier transform of this

array and Fourier transforming and normalizing the result yielded the incoherent

transfer function of the true phase screen.

3. Object Degradation

The product of the phase screen and the object's Fourier spectrum yielded

the short exposure image spectrum. The inverse Fourier transform of this spectrum

resulted in the required short exposure image. Since the object was normalized to

the photon count of the short exposure image and the phase screen was normalized

to unity, the final step in the degradation process was to apply photon noise to the

short exposure image. The photon noise effect was added to the short exposure

image by entering each image element into a Poisson distributed random function

generator provided by the Poisson function in the simulation. The generator returned
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a random number at each image point drawn from a Poisson distribution with mean

equal to that value. As the photon count decreased from infinity, the randomness of

the returned values increased which caused the grainy, photon noise effect. With

photon noise included, the short exposure image was complete.

4. Centroiding

The simulation supported centroiding the degraded short exposure in

image space. If desired, the image array was shifted to its true centroid first by

column, then by row, based on the centroids determined from equations (3.32) and

(3.33). Determining the centroid of the binary star object modified with equal

intensity stars checked the accuracy of the centroid subroutine. The object initially

had an arbitrary translation from its centroid. Centroiding this translated object using

the subroutine then analyzing its phase spectrum ensured the subroutine performed

correctly. Image centroiding worked well on high light-level images of the asteroid

above 104 photons. Images below this level had unevenly distributed intensities and

centroiding was ineffective.

5. Image Recovery

The simulation separated image recovery into two distinct parts. First, the

Labeyrie technique provided the object's power spectrum. Use of this technique for

both programs ensured uniformity in comparison. Second, the KT and TC techniques

reconstructed the object's phasor spectrum, each in separate programs.
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a. Power Specrum Recovery

Recovery of the object's power spectrum provided the modulus of the

object's Fourier spectrum. Estimates of the autocorrelation were calculated for each

short exposure image of the object and the point source. Averages of these results

yielded the average power spectrum. Normalizing both power spectrum arrays by

their respective DC values provided an equivalent intensity basis. Dividing the

object's average power spectrum by the point source's average power spectrum

removed imaging system errors. The square root of this result multiplied by the

photon count furnished the object's modulus.

b. Phasor Spectrum Recovery

The object's phasor spectrum, with its modulus, determined the

object's Fourier spectrum. Each short exposure image provides estimates of the

either the cross-spectrum or the bispectrum, for various offset values. Several of

these estimates, each with a different offset value, determined a specific phasor array

element by averaging these estimates over all short exposure images, then over all

offset values.

Recursive calculation, outward from the origin of the image array,

supplied the estimates, and hence the object's phasor spectrum. The number of

estimates which existed within an estimation circle of integer pixel radius equal to the

whole part of the pixel distance of the desired point determined the maximum

number of estimates and the offset value for each phasor estimated. The estimation

circle began at the origin, and the estimates of the phasor spectrum points began one
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radial pixel distance beyond that. The phasor at the origin had a value of one, since

it had no imaginary part, and it was normalized. Each phasor spectrum point

included more estimations as the recursive process proceeded, out to the maximum

radial offset value. The same estimates of the phasor spectrum were found for every

short exposure image and then averaged. Averaging a set of estimates associated

with a phasor spectrum point produced the corresponding phasor value for that point.

Using the phasor spectrum of the uncorrupted binary star object

modified with equal intensity stars verified the phasor recovery process. Comparing

the phasor spectrum of the binary star before and after the recovery process using

complex double precision numbers provided a match for all points to ten significant

figures.

The phasor recovery process required an extensive amount of

calculation. The time for phase reconstruction was approximately 30 seconds for

every short exposure image. The process was made less time consuming by invoking

Hermitian symmetry. Hermitian symmetry dictates

Oi, = O;. , (4.4)

thereby allowing half the number of calculations to determine the full object's phasor

spectrum.

At the end of the phasor recovery operation, the variance of the cross-

spectrum or bispectrum estimates provided an SNR value for each phasor element

from equations (3.34) through (3.37). The square of the SNR for each estimate was
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then multiplied by the corresponding estimate when the phasor spectrum points were

calculated. This calculation provided a weighted least squares estimation of the

object's phasor spectrum. When combined with the recovered modulus, the object's

Fourier spectrum resulted.

6. Azimuthal Signal-To-Noise Ratio

Averaging the SNR values of the cross-spectrum and bispectrum provided

an average SNR value for each phasor element. This average SNR array was then

averaged azimuthally, one radial pixel value at a time, from the origin out to the

cutoff frequency to provide a SNR as a function of radial spatial frequency. This

radial SNR provided one means to compare the two phasor recovery techniques as

well as to determine the frequency at which noise overcame signal to enable proper

filtering.

7. Fourier Spectrum Filtering

The final result of the simulation process was a weighted least squares

estimate of the object's Fourier spectrum. Before inverse Fourier transformation, the

object's Fourier spectrum required filtering. A simple rectangular low-pass filtering

method, which truncated spatial frequencies beyond the radial frequency where the

azimuthal SNR was unity, determined the object's Fourier spectrum. This filtering

process was provided by a separate program which included a method to determine

the phase error of the recovered image's Fourier spectrum.
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8. Azimuthal RMS Phase Error

Measuring the phase error of the two phasor recovery techniques

produced another means for comparison. The object's phasor spectrum determined

its phase spectrum. Computing the phase spectrum modulo 2w, then subtracting the

result from the object phase spectrum of the true object representation provided the

array point phase error. The square of this error was determined then averaged

azimuthally one radial pixel value at a time, from the origin out to the cutoff

frequency. The square root of this average provided the azimuthal RMS phase error.

C. SUMMARY

The simulation process obtained the reconstructed image from several short

exposures images. The process prodred the desired object and the phase screens

to make the short exposure images required for speckle imaging. With several short

exposure images of the object, the Labeyrie technique recovered its power spectrum

and the Knox-Thompson and Triple-Correlation techniques recovered its phasor

spectrum. Low-pass filtering removed noise and the SNR and phase error

calculations presented means for comparison of the two phasor recovery techniques.

The inverse Fourier transform of the filtered spectrum yielded the recovered image

presented in the form of a contour plot.
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V. SIMULATION RESULTS

A. RECOVERY TECINIQUE COMPARISON CRITERIA

Seven criteria provided a basis for comparison of the KT and TC phasor

recovery techniques. Each criterion tested the reconstructed image's resolution

produced by both algorithms over a range of values for a specific imaging parameter.

A baseline of imaging parameters (Table A.I) was established. Typically one

parameter was varied within an individual criterion. Each criterion used a range of

two to four imaging parameter values. The criteria included reconstructed image

evaluation based on the quantity of short exposure images, the short exposure image

photon count, and the amount of turbulence. Additionally, the effects of short

exposure image tilt on reconstruction as well as centroiding in image space to remove

it, were weighed. Further, the effect of offset value on cross-spectrum and

bispectrum estimates and object size on image resolution, were rated.

The techniques were judged in terms of image resolution, phasor spectrum

SNR, and phase error. Each comparison included both the KT and TC image

reconstructions. The evaluation included two-dimensional graphs of the SNR values

for both the KT and TC image reconstruction as well as their phase error values.

The reconstructed images appear with normalized intensities on two-dimensional

contour plots with hachure marks indicating the direction of minima. The SNR and

phase error values for each comparison were plotted against spatial frequency. The
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maximum frequency value was the last point at which the SNR had a value of one

or greater. The reconstructed image plots were visually compared to the object's true

image. By contrast, their SNR and phase error values were compared to each other.

B. RECOVERY TECHNIQUE COMPARISONS

Appendix A maintains the results of the recovery technique comparisons within

the seven criteria. Table A delineates the imaging parameters involved in the

simulation process and whether these values are variable over these criteria. Figures

A.1 and A.2 represent the true representations of the asteroid and binary star

respectively. These figures show the results of the actual computer generated objects

without turbulence corruption, filtering, or modification resulting from the imaging

system including aperture effects, which all other figures include. They were the

reference figures for the reconstructed images and the phase error calculations.

Figures A.3 through A.22 are plots of single short exposure images of the asteroid,

the binary star and the star that show the effects of varying coherence lengths and

photon counts. They show the level of distortion the objects realize in the imaging

process. Figures A.23 through A.25 are plots of long exposure images that consisted

of an average of 100 short exposure images with tilt. The inclusion of these images

provides an appreciation for the necessity of image reconstruction to acquire an

image that more closely resembles the truth.
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1. Short Exposure Image Quantity

Image resolution increases with the quantity of short exposure images used

in the reconstruction process. Varying the quantity of images with no tilt present

provided the first comparison criterion for the recovery techniques. For the four

comparisons, the values of Nf were 400 (baseline), 25, 100, and 1600 short exposure

images. All other baseline parameters remained unchanged. The relevant plots and

graphs are Figures A.26 through A.41. In all cases, the visual image quality of the

TC recovered images was superior to those recovered by the KT process. This image

quality distinction was especially noticeable at the lower Nf values of 25 and 100. As

the value of N, increased, the distinction decreased to the point where it was only

slightly noticeable at the Nf of 1600. Analysis of the phasor spectrum SNR graphs

showed, in general, that the TC SNR curves were offset toward approximately ten to

20 percent greater SNR values than those of the KT SNR curves. Further, the phase

error graphs showed the error curves resulting from the TC method were offset

toward approximately five to 15 percent lesser error than those of the KT method.

These two series of graphs confirmed that in all cases, especially at low Nf, the TC

technique outperformed the KT technique.

2. Photon Count

Image resolution increases with the amount of short exposure image

photons present. Varying the quantity of photons in the short exposure images with

no tilt present provided the second comparison criterion for the recovery techniques.

For the four comparisons, the photon count values were 10 (baseline), 106, 10, and
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103 photons where all other baseline parameters remained unchanged. Figures A.26

through A.29 and A.42 through A.53 are applicable for this criterion. The visual

quality of the TC and KT reconstructed images for photon counts of 106 and IO0 was

almost identical. For photon counts of 104 and 1Ws, the KT technique produced

slightly better reconstructed images. This photon count distinction of recovery

technique performance was confirmed by both the SNR and phase error graphs. For

low photon count short exposure images, the KT technique SNR curves were offset

toward approximately ten to 20 percent greater SNR values than those of the TC

technique, and the phase error curves were generally offset toward five to 25 percent

lesser error values. Therefore, for low photon count image recovery without tilt, the

KT phasor recovery technique provides slightly better resolution.

3. Turbulence Magnitude and Offset Value

As the amount of turbulence increases, the resolution of the reconstructed

image decreases. Short exposure images with no tilt of coherence lengths 0.103 and

0.206 meters (baseline), provided the third and fourth comparison criteria for the

recovery techniques. For the turbulence magnitude criterion, the 0.103 meter

coherence length images required an offset value of two, to ensure inclusion of all

spatial frequencies. For consistency, the 0.206 meter coherence length images used

the same value. Comparison between offset values of two and four satisfied the

offset criterion for TC and KT reconstructed images. Offset values effect the

quantity of cross-spectrum or bispectrum averaging and the reconstructed image

quality increases with increasing offset value. All other baseline parameters remained
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unchanged. Figures A.54 through A.61 showed the comparisons of the turbulence

criterion and Figures A.26 through A.29 and A.58 through A.61 showed the

comparisons of the offset criterion. For the coherence length case, the KT technique

provided a slightly better image with greater turbulence. The TC SNR curve was

offset toward approximately five to ten percent greater SNR values relative to the KT

curve. However, the KT phase error curve was offset toward approximately five

percent lesser error values providing the more resolved image. For the offset value

case, the TC technique produced a slightly better image, though the SNR and phase

error curves were almost coincident. This apparent contradiction arose from TC

techniques having more frequency values above the unity SNR value, thereby

providing higher frequencies for the filtering process.

4. Tilt

The resolution of the reconstructed image declines with the inclusion of

tilt in the short exposure images. The previous criterion comparisons were conducted

without the presence of tilt. The addition of tilt provides a more realistic comparison

of the phasor recovery techniques as tilt is always present in true short exposure

images. Varying the photon count of the short exposure images with tilt present

provided the fifth criterion for comparison of the recovery techniques. For the three

comparisons, the photon count values were 10, 104, and 103 photons and all other

baseline parameters remained unchanged. Figures A.62 through A.77 were

applicable for this criterion. In all photon count cases, the TC recovered image were

superior. The KT SNR curves were generally offset toward 30 to 50 percent lesser
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SNR values and dropped below the unity value at lower spatial frequencies than the

TC curves. Hence, fewer high frequency values were included in the filtering process,

producing a poorer resolution. The phase error curves for the TC recovered images

were offset toward approximately 20 to 50 percent lesser error values than for those

recovered using the KT process except at the 1W photon count. At this value,

however, the KT SNR curve was offset toward much lower SNR values.

Consequently, the TC technique was found to be superior when tilt was included in

the short exposure images.

S. Centroiding

Centroiding the short exposure images prior to image reconstruction

enhances both the TC and KT recovery techniques for high photon counts. Short

exposure image centroiding provided the sixth criterion for comparison of the

recovery techniques by again varying the photon count of the short exposure images.

With tilt present, the images were centroided prior to reconstruction. For the three

comparisons, the photon count values were 05 , 104, and 10 photons and all other

baseline parameters remained unchanged. Additionally, a comparison with I0

photons and 1600 short exposures with and without tilt tested the effects of

centroiding at high Nf values. Figures A.78 through A.93 were relevant for this

criterion. Centroiding offered a two to five percent improvement to both recovery

methods with higher photon count. At low photon counts such as 103 photons,

centroiding actually offset the phase error curves toward higher error values. For the

TC method, centroiding should have no effect or the effect should disappear with
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large enough N, values since the method is shift invariant. However, at 10W photons

and with 1600 short exposure images, a minor improvement in phase error occurred

with centroiding. Centroiding did not improve the reconstructed image to the point

of those recovered images having no tilt, nor did centroiding bring the KT method

results in line with that of the TC method. However, a minor improvement in phase

error occurred for both methods.

6. Point Objects

The resolution of the reconstructed image depends upon its size and

detail. Resolution of an object such as a binary star occurs more easily because of

the requirement for less short exposure image photons. A binary star with one star

having twice the intensity as its counterpart, provided the seventh comparison

criterion for the phasor recovery techniques. The binary star was corrupted by

turbulence of coherence length 0.103 and 0.206 meters and with short exposure image

photon counts of 102 and 103 photons. Figures A.94 through A.109 are germane.

The two techniques produced identical results at the higher photon count and lower

turbulence values. With lower photon count and greater turbulence, the TC

technique provided greater resolution of the stars. Both the SNR and phase error

curves supported this fact.

7. Recovery Technique Comparison Findings

For the eventual use of real objects in future applications of the recovery

techniques where tilt is inherent in short exposure images, triple-correlation was the
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superior reconstruction technique. The triple-correlation technique exceeded the

Knox-Thompson technique by far in the comparisons where tilt was a concern. The

shift invariance of the triple-correlation technique provided the ability to resolve low

light-level objects where the Knox-Thompson technique failed. Though the Knox-

Thompson technique required eight percent less time for image reconstruction, the

resolution improvement obtained by the TC approach outweighed the computational

time efficiency of the competing technique.
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VI. CONCLUSION

A. OVERVIEW

This thesis compared the Knox-Thompson and triple-correlation phasor

recovery techniques. Since speckle imaging involves extensive calculations,

comparison of the two techniques required a powerful computer. The simulation

produced an object and a phase screen for each short exposure image. The

diffraction-limited information in these images allowed reconstruction of the object's

power and phasor spectra. Combining these spectra produced the reconstructed

image. Image reconstruction comparison under seven imaging criteria permitted the

ability to determine the superior technique. The triple-correlation technique provided

the best overall image resolution. This judgement stems from its superiority with

regard to realistic short exposure images which included tilt.

B. OPTIMUM IMAGE RECOVERY APPROACH

This thesis found that, of the two phasor recovery techniques compared, the

triple-correlation technique was the optimum approach for real short exposure image

recovery. From the shift invariance of the triple-correlation technique, attainment

of 20 to 50 percent less azimuthal phase error values occurred when compared with

the Knox-Thompson technique. As a result, use of the triple-correlation phasor

recovery technique is essential. Specifically, removal of the noise bias compensates
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for the random photon noise that is intrinsic to real images. The use of phasor vice

phase recovery is key to avoid the phase 2ir wrap-around problem. The weighting

of the phasors determined from their cross-spectrum or bispectrum estimates by the

least squares estimation approach, is critical. The recursion method used to provide

the phasors is not imperative, and other techniques may be used, such as the method

of least squares or the method of steepest decent, not discussed in this thesis. With

regard to imaging parameters, the triple-correlation technique allowed larger

maximum offset values than the Knox-Thompson technique; DI instead of r0 l.

This provides maximum estimate averaging. Based on the results with centroiding,

it is helpful for relatively high light level short exposure images. Finally, peak

recovered image resolution requires the maximum amount of short exposure images

practicable.

C. FURTHER STUDY

This thesis provided simulated results for comparison of the two recovery

techniques. Application of the triple-correlation technique to actual, turbulence-

degraded images provides an avenue of research. Development and testing of other

methods of extracting the phasor spectrum beyond the recursion method demands

analysis. Reconstructed Fourier spectrum filtering processes beyond the simple

rectangular low pass filtering approach used herein require exploration.
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APPENDIX A. PLOTS AND GRAPHS

The following table, plots, and graphs were referenced in the text.

Figure A. Imaging Parameters.

Imaging Parameter Parameter Parameter Parameter
Abbrev. Baseline Value

Short Exposure Nf 400 Variable

Image Quantity

Coherence Length ro  0.206 (m) Variable

Short Exposure NP 10 Variable
Image Photon
Quantity

Offset Value OS 4 (pixels) Variable

Telescope Primary D 1.6 (m) Constant
Diameter

Telescope Secondary D. 0.33 (m) Constant
Diameter

Aperture Radius a 31 (pixels) Constant

light Wavelength k 5.5 x 10.' Constant
(M)

Cutoff Frequency fc 68.3 (1/arcsec) Constant

Random Number s 123456789 Constant
Seed
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Figure A.76 Asteroid Phasor Spectrum SNR, Tilt, Nt = 1600.
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APPENDIX B. KNOX-THOMPSON MAIN PROGRAM

c THIS PROGRAM CREATES ONE OF THREE IMAGES: A STAR, A
c BINARY STAR AND AN ASTEROID. IT THEN DEGRADES THE
c IMAGE BY SIMULATING ATMOSPHERIC CONDITIONS AND PHOTON
c NOISE, AND THEN RECONSTRUCTS THE IMAGE USING THE
c KNOX-THOMPSON ALGORITHM.

c AUTHOR: LT JAMES M. LACKEMACHER
c COMPL DATE: 26 OCTOBER 1990
c REASON: COMPLETE REQUIREMENTS FOR A MASTERS
c DEGREE IN PHYSICS.
c GOAL: SIMULATE OBJECT, DEGRADE OBJECT,
c RECONSTRUCT OBJECT USING KNOX-
c THOMPSON AND TRIPLE-CORRELATION
c METHODS, FILTER AND COMPARE.

PROGRAM KNOXTHOMPSON

c MAIN PROGRAM COMPLEX VARIABLE LIST

c F n DIM ARRAY USED IN THE FOURIER TRANSFORM
c GAUSSiAN n x n DIM ARRAY THAT REPRESENTS THE GAUSSIAN
c PORTION OF THE ASTEROID

I n x n DIM ARRAY THAT REPRESENTS THE
DEGRADED IMAGE

IKT n x n x 5 x 9 ARRAY THAT REPRESENTS THE CROSS-
SPECTRUM OF THE IMAGE

c IS n x n DIM ARRAY THAT REPRESENTS THE
c DEGRADED POINT SOURCE
c ISKT n x n DIM ARRAY THAT REPRESENTS THE MODULUS
c SQUARED OF THE POINT SOURCE
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c OKT n x n DIM ARRAY THAT REPRESENTS THE OBJECT
c SPECTRUM OF THE RECONSTRUCTED IMAGE
c OBJDATA n x n DIM ARRAY THAT REPRESENTS THE OBJECT
c KTPHASOR n x n DIM ARRAY THAT REPRESENTS THE PHASOR OF
c THE OBJECT IN THE RECONSTRUCTION PROCESS
c PUPIL n x n DIM ARRAY THAT REPRESENTS THE PUPIL
c PORTION OF THE ASTEROID
c TEMPDATA n x n DIM ARRAY THAT IS USED AS A TEMPORARY
c ARRAY

c MAIN PROGRAM REAL VARIABLE LIST

c KTsnr n x n DIM ARRAY THAT REPRESENTS THE SNR OF
EACH PHASOR

c mod n x n DIM ARRAY THAT REPRESENTS THE MODULUS
c OF THE RECONSTRUCTED IMAGE
c rsnr n/2 DIM ARRAY THAT REPRESENTS THE SNR AS A
c FUNCTION OF RADIUS
c xvarrkt n x n x 5 x 9 DIM ARRAY THAT REPRESENTS THE
c REAL PART OF THE VARIANCE OF THE CROSS-
c SPECTRUM
c xvarikt n x n x 5 x 9 DIM ARRAY THAT REPRESENTS THE
c IMAGINARY PART OF THE VARIANCE OF THE CROSS-
c SPECTRUM

c MAIN PROGRAM INTEGER VARIABLE LIST

c fwd VALUE OF 1 FOR FORWARD FFT
c icounter COUNTER THAT COUNTS THE NUMBER OF
c SNAPSHOTS
c inv VALUE OF -1 FOR INVERSE FFT
c In 2"In FOR USE WITH FFT SUBROUTINE
c offset VARIABLE THAT REPRESENTS THE NUMBER OF
c PIXELS THAT ARE AVERAGED IN THE KNOX-
c THOMPSON PROCESS
c mseed VARIABLE USED TO ENSURE ONLY ONE PASS OF
c INITIAL PART OF PHSUB SUBROUTINE
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c n DIMENSION OF ONE SIDE OF 2-DIM ARRAY
c nframes TOTAL NUMBER OF SHORT EXPOSURE SNAPSHOTS
c nphoton TOTAL NUMBER OF PHOTONS IN SNAPSHOT
c nyquist EQUAL TO THE TELESCOPE PUPIL FUNCTION RADIUS
c DERIVED FROM THE RELATION:
c nyquist = (telescope diameter x
c number of pixels per rO)/rO

c MAIN PROGRAM

PARAMETER(i=64,ln=6,fwd=- 1,inv=-1)

COMPLEX*16 OBJDATA(n,n), TEMPDATA(n,n), F(n),
+ PUPIL(n,n), STARDATA(n,n), GAUSSIAN(nn),
+ KTPHASOR(n,n), IKT(n,n,5,9), ISKT(n,n),
+ I(nn), IS(n,n), OKT(n,n)

REAL*8 mod(nn), xvarrkt(nn,5,9), xvarikt(nn,5,9),
+ KTsnr(n,n), rsnr(n/2)

INTEGER offset

CHARACTER*16 filel, file2
CHARACTER*1 cent

c INITIALIZE MSEED TO ALLOW ONLY ONE PASS THROUGH FIRST
c PART OF PHSUB

mseed = 1

c INITIALIZE PROGRAM READING REQUIRED VARIABLES AND
c CREATE THE DESIRED OBJECT

CALL Initialize(OBJDATAGAUSSIAN,PUPII, F,TEMPDATA,
+ file 1,file2,fwd,inv,ln,nframes,nphoton,nyquist,
+ offset,cent,n)

c TRANSFORM THE OBJECT TO FREQUENCY SPACE

CALL FFT2D(OBJDATATEMPDATAF,ln,fwd,n)
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c NORMALIZE ALL OF THE ARRAY ELEMENTS TO THE VALUE OF
c THE NUMBER OF PHOTONS WHERE THE DC TERM EQUALS THE
c NUMBER OF PHOTONS OF THE IMAGE

CALL Photons(OBJDATAnphotonn)

c CREATE THE POINT SOURCE

CALL Star(STARDATAn)

c TRANSFORM THE POINT SOURCE TO FREQUENCY SPACE

CALL FFT2D(STARDATATEMPDATA,F,In,fwdn)

c NORMALIZE ALL OF THE ARRAY ELEMENTS TO THE VALUE OF
c THE NUMBER OF PHOTONS WHERE THE DC TERM EQUALS THE
c NUMBER OF PHOTONS OF THE IMAGE

CALL Photons(STARDATAnphoton,n)

c COMMENCE THE LOOP THAT COUNTS THE SNAPSHOTS

DO 10 icounter = 1, nframes

c DEGRADE THE IMAGE WITH THE TELESCOPE, THE ATMOSPHERE,
c AND THE PHOTON NOISE

CALL PHSUB(I,FTEMPDATAOBJDATAicounternframes,
+ nyquistfwdinvln,n,mseed)

c CENTROID THE DEGRADED IMAGE ONLY SINCE ONLY PHASE IS
c EFFECTED BY CENTROIDING IF CENTROIDING IS DESIRED.

IF ((cent.EQ.'Y').OR.(cent.EQ.'y')) THEN
CALL Centroid(ITEMPDATAn)

ENDIF

c TRANSFORM THE DEGRADED IMAGE TO FREQUENCY SPACE

CALL FFT2D(I,TEMPDATA,F,ln,fwdn)
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c DEGRADE THE POINT SOURCE WITH THE TELESCOPE, THE
c ATMOSPHERE, AND THE PHOTON NOISE

CALL PHSUB(IS,FTEMPDATASTARDATAicounter,nframes,
+ nyquistfwdinvln,n,mseed)

c TRANSFORM THE DEGRADED IMAGE TO FREQUENCY SPACE

CALL FFT2D(IS,TEMPDATAF,ln,fwdn)

c DETERMINE THE MODULUS OF THE DEGRADED IMAGE AND
c POINT SOURCE

CALL Modulus(I,IS,IKT,ISKTmod,icounter,
+ nframes,nphoton,n)

c RECONSTRUCT THE OBJECT FROM THE DEGRADED IMAGE AND
c POINT SOURCE

CALL KTrecon(KTPHASORI,IKTKTsnroffsetxvarrkt,
+ xvarikt,icounter,nframes,nyquistn)

WRITE(*,*)icounter,'FRAMES COMPLETED'

c END THE LOOP

10 CONTINUE

c CALCULATE THE AVERAGE SNR AS A FUNCTION OF RADIUS

CALL SNRcaic(KTsnrrsnrnyquist,n)

c COMBINE THE MODULUS WITH THE PHASOR

CALL Combine(OKTrmod,KTPHASOR,n)

c WRITE RECONSTRUCTED PHASE AND POWER SPECTRUM TO A
c FILE

CALL Writefile(OKTrsnrfile 1,file2,nyquistn)

STOP
END
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APPENDIX C. TRIPLE-CORRELATION MAIN PROGRAM

c THIS PROGRAM CREATES ONE OF THREE IMAGES: A STAR, A
c BINARY STAR AND AN ASTEROID. IT THEN DEGRADES THE
c IMAGE BY SIMULATING ATMOSPHERIC CONDITIONS AND PHOTON
c NOISE, AND THEN RECONSTRUCTS THE IMAGE USING THE TRIPLE-
c CORRELATION ALGORITHM.

c AUTHOR: LT JAMES M. LACKEMACHER
c COMPL. DATE: 26 OCTOBER 1990
c REASON: COMPLETE REQUIREMENTS FOR A MASTERS
c DEGREE IN PHYSICS.
c GOAL SIMULATE OBJECT, DEGRADE OBJECT,
c RECONSTRUCT OBJECT USING KNOX-
c THOMPSON AND TRIPLE-CORRELATION
c METHODS, FILTER AND COMPARE.

PROGRAM TRIPLECORR

c MAIN PROGRAM COMPLEX VARIABLE LIST

c BSPHASOR n x n DIM ARRAY THAT REPRESENTS THE PHASOR OF
c THE OBJECT IN THE RECONSTRUCTION PROCESS
c F n DIM ARRAY USED IN THE FOURIER TRANSFORM
c GAUSSIAN n x n DIM ARRAY THAT REPRESENTS THE GAUSSIAN
c PORTION OF THE ASTEROID

I n x n DIM ARRAY THAT REPRESENTS THE DEGRADED
IMAGE

c IBS n x n x 5 x 9 ARRAY THAT REPRESENTS THE
c BISPECTRUM OF THE IMAGE
c IDBS 5 x 9 ARRAY THAT REPRESENTS THE DEVIATION
c FROM THE DC TERM
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c IS n x n DIM ARRAY THAT REPRESENTS THE DEGRADED
c POINT SOURCE
c ISBS n x n DIM ARRAY THAT REPRESENTS THE MODULUS
c SQUARED OF THE POINT SOURCE
c OBS n x n DIM ARRAY THAT REPRESENTS THE OBJECT
c SPECTRUM OF THE RECONSTRUCTED IMAGE
c OBJDATA n x n DIM ARRAY THAT REPRESENTS THE OBJECT
c PUPIL n x n DIM ARRAY THAT REPRESENTS THE PUPIL
c PORTION OF THE ASTEROID
c TEMPDATA n x n DIM ARRAY THAT IS USED AS A TEMPORARY
c ARRAY IN THE FOURIER TRANSFORM

c MAIN PROGRAM REAL VARIABLE LIST

c BSsnr n x n DIM ARRAY THAT REPRESENTS THE SNR OF
c EACH PHASOR
c mod n x n DIM ARRAY THAT REPRESENTS THE
c MODULUS OF THE RECONSTRUCTED IMAGE
c rsnr n/2 DIM ARRAY THAT REPRESENTS THE SNR AS A
c FUNCTION OF RADIUS
c xvarrbs n x n x 5 x 9 DIM ARRAY THAT REPRESENTS THE
c REAL PART OF THE VARIANCE OF THE BISPECTRUM
c xvanbs n x n x 5 x 9 DIM ARRAY THAT REPRESENTS THE
c IMAGINARY PART OF THE VARIANCE OF THE
c BISPECTRUM

c MAIN PROGRAM INTEGER VARIABLE LIST

c fwd VALUE OF 1 FOR FORWARD FFT
c icounter COUNTER THAT COUNTS THE NUMBER OF
c SNAPSHOTS
c inv VALUE OF -1 FOR INVERSE FFT
c In 2 "In FOR USE WITH FFT SUBROUTINE
c offset VARIABLE THAT REPRESENTS THE NUMBER OF

PIXELS THAT ARE AVERAGED IN THE TRIPLE-
CORRELATION PROCESS
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c mseed VARIABLE USED TO ENSURE ONLY ONE PASS OF
c INITIAL PART OF PHSUB SUBROUTINE
c n DIMENSION OF ONE SIDE OF 2-DIM ARRAY
c nframes TOTAL NUMBER OF SHORT EXPOSURE SNAPSHOTS
c nphoton TOTAL NUMBER OF PHOTONS IN SNAPSHOT
c nyquist EQUAL TO THE TELESCOPE PUPIL FUNCTION RADIUS
c DERIVED FROM THE RELATION:
c nyquist = (telescope diameter x
c number of pixels per rO)/rO

MAIN PROGRAM

PARAMETER(n=64,ln=6,fwd= 1,inv=-1)

COMPLEX*16 OBJDATA(nn), TEMPDATA(nn), F(n),
+ PUPIL(n,n), I(nn), STARDATA(n,n), GAUSSIAN(n,n),
+ BSPHASOR(n,n), IBS(nn,5,9), ISBS(n,n), IS(n,n),
+ OBS(nn), IDBS(5,9)
REAL*8 mod(nn), xvarrbs(nn,5,9), xvanbs(nn,5,9),
+ BSsnr(nn), rsnr(n/2)

INTEGER offset

CHARACTER*16 filel, file2
CHARACTER* 1 cent

c INITIALIZE MSEED TO ALLOW ONLY ONE PASS THROUGH FIRST
c PART OF PHSUB

mseed = 1

c INITIALIZE PROGRAM READING REQUIRED VARIABLES AND
c CREATE THE DESIRED OBJECT

CALL Initialize(OBJDATA, GAUSSIAN,PUPILF,TEMPDATA,
+ filel,fe2,fwdinvln,nframes,
+ nphotonnyquistoffsetcentn)
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c TRANSFORM THE OBJECT TO FREQUENCY SPACE

CALL FFT2D(OBJDATATEMPDATA,F,ln,fwdn)

c NORMALIZE ALL OF THE ARRAY ELEMENTS TO THE VALUE OF
c THE NUMBER OF PHOTONS WHERE THE DC TERM EQUALS THE
c NUMBER OF PHOTONS OF THE IMAGE

CALL Photons(OBJDATAnphotonn)

c CREATE THE POINT SOURCE

CALL Star(STARDATAn)

c TRANSFORM THE POINT SOURCE TO FREQUENCY SPACE

CALL FFr2D(STARDATATEMPDATA,F,In,fwdn)

c NORMALIZE ALL OF THE ARRAY ELEMENTS TO THE VALUE OF
c THE NUMBER OF PHOTONS WHERE THE DC TERM EQUALS THE
c NUMBER OF PHOTONS OF THE IMAGE

CALL Photons(STARDATAnphoton,n)

c COMMENCE THE LOOP THAT COUNTS THE SNAPSHOTS

DO 10 icounter = 1, nframes

c DEGRADE THE IMAGE WITH THE TELESCOPE, THE ATMOSPHERE,
c AND THE PHOTON NOISE

CALL PHSUB(I,F,TEMPDATAOBJDATAicounternframes,
+ nyquist,fwd,invln,n,mseed)

c CENTROID THE DEGRADED IMAGE ONLY SINCE ONLY PHASE IS
c EFFECTED BY CENTROIDING IF CENTROIDING IS DESIRED.

IF ((cent.EQ.'Y').OR.(cent.EQ.'y')) THEN
CALL Centroid(I,TEMPDATAn)

ENDIF
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c TRANSFORM THE DEGRADED IMAGE TO FREQUENCY SPACE

CALL FFT2D(I,TEMPDATAF,ln,fwdn)

c DEGRADE THE POINT SOURCE WITH THE TELESCOPE, THE
c ATMOSPHERE, AND THE PHOTON NOISE

CALL PHSUB(IS,FTEMPDATASTARDATAicounternframes,
+ nyquistfwdinvln,nmseed)

c TRANSFORM THE DEGRADED IMAGE TO FREQUENCY SPACE

CALL FFr2D(ISTEMPDATA,F,In,fwdn)

c DETERMINE THE MODULUS OF THE DEGRADED IMAGE AND
c POINT SOURCE

CALL Modulus(I,IS,IBS,ISBS,modicounter,
+ nframes,nphotonn)

c RECONSTRUCT THE OBJECT FROM THE DEGRADED IMAGE AND
c POINT SOURCE

CALL BSrecon(BSPHASORI,IBS,IDBS,BSsnroffset,
+ xvarrbsxvanrbs,icounternframes,
+ nyquistnphotonn)

WRITE(*,*)icounter,lFRAMES COMPLETED'

c END THE LOOP

10 CONTINUE

c CALCULATE THE AVERAGE SNR AS A FUNCTION OF RADIUS

CALL SNRcalc(BSsnrrsnrnyquistn)

c COMBINE THE MODULUS WITH THE PHASOR

CALL Combine(OBS,modBSPHASOR,n)
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c WRITE RECONSTRUCTED PHASE AND POWER SPECTRUM TO A

c FILE

CALL Writefile(OBSrsnr~filelofie2,nyquistn)

STOP

END
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APPENDIX D. UNIVERSAL IMAGE RECOVERY SUBROUTINES

c THE FOLLOWING SUBROUTINES WERE GENERATED BY THE
c THESIS AUTHOR AND ARE REQUIRED BY BOTH THE KNOX-
STHOMPSON AND THE TRIPLE-CORRELATION PROGRAMS.
c ADDMTONALLY, SOME SUBROUT'INES ARE REQUIRED FOR
c THE FILTRMS PROGRAM IN APPENDIX H.

SUBROUTINE LIST

SUBROUTINE Ast(ASTEROID,GAUSSIANPUPIL.,FTEMPDATA,
+ fwdinvInn)
COMPLEX*16 GAUSSIAN(nn), ASTEROID(n,n), PUPIL(n,n),
+ TEMPDATA(nn), F(n), El, E2, E3, E4, E5, E6, E7
maxval =0.0
aval = 4.0
n2pl= n/2+lI
rad = 16.0
DO 10 i = 1, n

DO 10j = 1, n
x = floatoj - (n2pl))
y = float((n2pl) - i)
radius = sqrt(x**2.0 + y**2.0)
IF (radius.LE.rad) THEN

PUPIL~ij) = (1.0,0.0)
ELSE

PUPIL(ij) = (0.0,0.0)
ENDIF
IF ((abs(x).LE.aval).AND.(abs(y).LE.aval)) TIHEN

GAUSSIAN(ij) = DCMlPLX(exp(-(x**2.0 +
+ y**2.0)14))

ELSE
GAUSSIAN(ij) = (0.0,0.0)

ENDIF
10 CONTINUE

CALL FFT2D(GAUSSIANTEMPDATAFln,fwd,n)
CALL FFT2D(PUPILTEMPDATAFn,fwd,n)
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DO 20 i = 1, n
DO 20j= 1, n

ASTEROID(ij) = GAUSSIAN(ij) *PUPIL~ij)
20 CONTINUE

CALL FFr2D(ASTEROIDTEMPDATAFln,ixwvn)
a = 10
al = 2.5
a2 =2
a3 =2.5
a4 = 2
a5 = 3.5

* a6 = 3
V7= 2.5
DO 30 i=1, n

DO 30j = 1, n
x = floatoj - (n2pl))
y = float((n2pl)- i)
xl = x+6
yl = y-8
xal = xl/al
yal = yl/al
IF ((abs(xal).LE.aval).AND.(abs(yal).LE.aval))

" THEN
El = DCMPLX(a * exp(-(xal**2.o + yal**2.0)))

ELSE
El = (0.0,0.0)

ENDIF
x2 =x-4
y2 =y-6

xa2 = x21a2
ya2 = y2/a2
IF ((abs(xa2).LE.aval).AND.(abs(ya2).LE.aval))

+ THEN
E2 = DCMPLX(a *exp(-(xa2**2.0 + ya2**2.0)))

ELSE
E2 = (0.0,0.0)

ENDIF
* x3 =x-10

y3 =y-
xa3 = x3/a3
ya3 = y3/a3
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IF ((abs(xa3).LEaval)AND.(abs(ya3).LE.avai))
+ THEN

E3 = DCMPLX(a * exp(-(xa3**2.0 + ya3**2.0)))
ELSE

E3 = (0.0,0.0)
ENDIF
x4 = x+6
y4 = y+6
xa4 = x4/a4
ya4 =y4/64
IF ((abs(xa4).LEaval).AND.(abs(ya4).LEaval))

+THEN
E4 = DCMPLX(a * exp(.(x4**2.0 + ya4**2.0)))

ELSE
E4 = (0.0,0.0)

ENDEF
X = X+0
y5 =y2
yxa= x5/a5
ya5 = /a
IF ((abs(xa5).LE.aval).AND.(abs(ya5).LEaval))

+THEN
E5 = D)CMPLX(a * exp(-(xa?**2.0 + ya?**2.0)))

ELSE
E5 = (0.0,0.0)

ENDEF
x6 = x+2
y6 =y+8
xa6 = x61a6
ya6 = y6/a6
IF ((abs(xa6).LEaval).AND.(abs(ya6).LEavaJ))

+THEN
E6 = DCMPLX(a * exp(-(xa6**2.0 + ya6**2.0)))

ELSE
E6 = (0.0,0.0)

ENDIF
V = x-6
y7 =y6
xa7 =x7/a7
ya7 - y7/a7
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IF ((abs(xa7).LE.aval).AND.(abs(ya7).LE.aval))
+ THEN

E7 = DCMPLX(a * exp(-(xa7**2.o + ya7**2.0)))
ELSE

E7 = (0.0,0.0)
ENDIF
ASTEROID(ij) = DCMPLX(DREAJL(ASTEROID(ij) -

+ (El1+E2 +E3 +E4 +E5+ E6 +E7)))
IF (DREAL(ASTEROID(ij)).LT.0.0) ASTEROID(ij)=

+ (0.0,0.0)
30 CONTINUE

* RETURN
END

SUBROUTINE Bistar(DATAn)

c THIS S/R CREATES A SIMULATED BINARY STAR WITH ONE STAR
c LARGER THAN THE OTHER

COMPLEX*16 DATA(n,n)
n2pl =n/2+1I
DO 10 i = 1, n

DO 10j = 1, n
x = floatoj - n2pl)
y = float(n2pl - i)
IOF ((x.EQ.12.0).AND.(y.EQ.12.0)) THEN

DATA(ij) = (2-0,0.0)
ELSEIF ((x.EQ.-12.0).AND.(y.EQ.-12.0)) THEN

DATA(ij) = (1.0,0.0)
ELSE

DATA(ij) = (0.0,0.0)
ENDIF

10 CONTINUE
RETURN
END
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SUBROUTINE Centroid(DATATEMPDATAn)

c THIIS S/R DETERMINES THE CENTROID OF THE DEGRADED IMAGE
c AND THEN CENTROIDS THE IMAGE

COMPLEX*16 DATA(n,n), TEMPDATA(nn)
REAL*8 xi, Ayi um, ynum, xden, yden
n2pl=n/2 + 1
DO 101i = 1, n

DO 10j = 1, ni
xj = dfloatoj - n2pl)
yi = dfloat(n2pl - i)
xnum =xnum +xj ABS(DATA(ij))
ynum = ynum + yi * ABS(DATA(ij))
xden = xden + ABS(DATA(ij))
yden = yden + ABS(DATA(ij))

10 CONTIN4UE
jxbar = idnint(xnum/xden)
iybar = idnint(ynum/yden)
DO 201i = 1, n

DO 20j = 1, n
ii= i- iybar
Aj = j + jxbar
IF ((li.GT.n).OR.(ii.LT.1).OR.(jj.GT.n).OR.

+ (jj.LT.1)) THEN
TEMPDATA(iy) = (0.0,0.0)

ELSE
TEMPDATA(ij) = DATA~iijj)

ENDIF
20 CONTINUE

DO 30 i = 1, n
DO 30j = 1, n

DATA(ij) = TEMPDATA(ij)
30 CONTINUE

RETURN
END
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SUBROUTINE Combine(O,modPHASOR,n)

c THIS S/R COMBINES THE MODULUS AND PHASOR OF THE
c RECONSTRUCTED OBJECT

COMPLEX*16 PHASOR(-n/2:n/2-1,-n/2:n/2-1),
+ O(-n/2:n/2-1,-n/2:n/2-1)
REAL*8 mod(-n/2:n/2-1,-n/2:n/2-1)
n2 = n/2
n2ml = n2- 1
DO 10 i = -n2, n2ml

DO 10 j = -n2, n2ml
O(ij) = mod(ij) * PHASOR(ij)

10 CONTINUE
RETURN
END

SUBROUTINE Complexconj(DATAn)

c THIS S/R IS CALLED BY FFT2D AND DETERMINES THE COMPLEX
c CONJUGATE OF THE 2-D ARRAY IN ORDER FOR THE ARRAY TO
c BE INVERSE FFTed.

COMPLEX*16 DATA(n,n)
DO 10 i = 1, n

DO 10j = 1, n
DATA(ij) = DCONJG(DATA(ij))

10 CONTINUE
RETURN
END
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SUBROUTINE FFT(Fln,n)

c THIS S/R IS USED BY THE 2-D FFT TWICE, FIRST FFTing THE
c ROWS THEN THE COLUMNS OF THE 2-D ARRAY. THIS S/R WAS
c AQUIRED FROM 'DIGITAL IMAGE PROCESSING" BY GONZALEZ
c AND WINTZ.

COMPLEX* 16 F(n),U,W,T
REAL*8 pi, one
one = 1.OD+00
pi = DACOS(-one)
nv2= n/2
nml -n-I
j=1
DO 3 i = 1, nml

IF(i.GE.j) GOTO 1
T = Fa)
F(j) = F(i)
F(i) T

I k=nv2
2 IF(LGE.j) GOTO 3

j =j-k
kfk/2
GOTO 2

3 jf=fj+k
DO 51= 1, In

le = 2**
lel = le/2
U = (1.0,0.0)
W = DCMPLX(DCOS(piIel),-DSIN(pi/Iel))
DO5j = 1,Iel

DO 4 i = j,n,le
ip = i + lel
T F(ip) * U
F(ip) = F(i) - T

4 F(i) =F(i) + T
5 U=U*W

RETURN
END
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SUBROUTINE FFT2D(DATATEMPDATAFln,dir,n)

c THIS S/R IS THE MAIN S/R AND PERFORMS A 2-D FFT ON AN
c ARRAY OF SIDE LENGTH 'n' WHERE 'ln' IS THE POWER OF 2.
c 'dir' IS EITHER + 1 OR -1 WHETHER XFORMING OR INVERSE
c XFORMING RESPECTIVELY. 'TEMPDATA' IS A WORKING ARRAY
c FOR THE QUADRANT SWAPPING S/R. 'F' IS THE 1-D ARRAY USED
c BY THE 1-D FFT S/R. THIS S/R CALLS QUADSWAP, FFT, FOR BOTH
c FORWARD AND INVERSE FFT AND CALLS NORMFFT AND
c COMPLEXCONJ FOR INVERSE FFT's ONLY. THIS FFT NORMALIZES
c BY DIVIDING BY n**2 WHEN THE INVERSE FFT IS PERFORMED.

COMPLEX*16 DATA(nn), F(n), TEMPDATA(nn)
INTEGER dir
CALL Quadswap(DATATEMPDATAn)
IF (dir.EQ.-1) THEN

CALL Complexconj(DATAn)
ENDIF
DO 10 i = 1, n

DO 20 j = 1, n
F(j) = DATA(ij)

20 CONTINUE
CALL FFT(Fln,n)
DO 30j = 1, n

DATA(ij) = F(j)
30 CONTINUE
10 CONTINUE

DO 40j = 1, n
DO50i = 1, n

F(i) = DATA(ij)
50 CONTINUE

CALL FFT(FIn,n)
do 60 i = 1, n

DATA(ij) = F(i)
60 CONTINUE
40 CONTINUE

IF (dir.EQ.-1) THEN
CALL Complexconj(DATAn)
CALL NormFFT(DATAn)

ENDIF
CALL Quadswap(DATA,TEMPDATAn)
RETURN
END
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SUBROUTINE Modulus(IIS,IDATAISDATAmodicounter,
+ nframesnphotonn)

c THIS S/R DET ERMINES THE MODULUS OF THE DEGRADED IMAGE
c AND THE POINT SOURCE AND NORMALIZES THEM BY DIVIDING
c BY THEIR RESPECTIVE DC VALUES.

COMPLEX*16 IDATA(-n2:n12-1,-n/2:n12-1,0:4,-4:4),
+ ISDATA(-nt2:n/2-1,-n/2:n/2-1), DC, DCS,
" I(-nt2:nt2-1,-nt2:nt2-1),
" IS(-nt2:n/2-1,-nt2:n/2-1)
REAL*8 mod(-nt2:nt2-1,-n12:nt2-1)
k =0
n2 =n/2
n2ml = n2-I1
DO 10 ii -n2, n2ml

DO 10u = -n2, n2ml
IDATA(iijj,k,k) = IDATA(iijj,kk) + ((I(iijj)

+ DCONJG(I(iijj))) - I(kk))
ISDATA(iijj) = ISDATA(iijj) + ((IS(iijj)

+ DCONJG(IS(iibj))) - IS(kk))
10 CONTINUE

IF (icounter.EQ.nframes) THEN
DC = IDATA(kk~kk)
DCS, = ISDATA(kk)
DO 20 ii -n2,n2ml

DO 20j = -n2, n2ml
IDATA(iijj,k,k) = IDATA(iijj,kk)/DC
ISDATA(iijj) = ISDATA(iij)/DCS
mod(iijj) = nphoton*

+ dsqrt(ABS(IDATA(iij,kk)fISDATA(iijj)))
IF (mod(iijj).GT.dfloat(nphoton))

+ mod(iijj) = dfloat(nphoton)
20 CONTINUE

ENDIF
RETURN
END
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SUBROUTINE NormFFT(DATAn)

c THIS S/R IS CALLED BY FFT2D FOR INVERSE FOURIER XFORMS
c AND NORMALIZES THE XFORM BY DIVIDING BY n**2.

COMPLEX* 16 DATA(nn)
nsqrd = n * n
DO 10 i = 1, n

DO 10j = 1, n
DATA(ij) = DATA(ij)/nsqrd

10 CONTINUE
RETURN
END

SUBROUTINE Photons(DATAnphoton,n)

c THIS S/R NORMALIZES THE DATA ARRAY TO MAKE THE DC
c VALUE EQUAL TO THE NUMBER OF PHOTONS IN THE OBJECT.

COMPLEX*16 DATA(nn)
REAL*8 photonum
ic = n/2 + 1
photonum = dfloat(nphoton)/DREAL(DATA(icic))
DO 10 i = 1, n

DO 10j = 1, n
DATA(ij) = photonum * DATA(ij)

10 CONTINUE
RETURN
END

SUBROUTINE Quadswap(DATATEMPDATAn)

c THIS S/R IS CALLED BY FFT2D AND SWAPS QUADRANTS OF DATA
c ARRAY USING TEMPDATA AS A WORKING ARRAY.

COMPLEX*16 DATA(n,n), TEMPDATA(n,n)
n2 i n/2
DO 10 i = 1, n/2

DO 10j = 1, n/2
TEMPDATA(ij) = DATA(i+n2,j+n2)
TEMPDATA(i+n2,j) = DATA(i,j+n2)
TEMPDATA(ij+n2) = DATA(i+n2,j)
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TEMPDATA(i+n2j+n2) = DATA(ij)
10 CONTINUE

DO 20Oi= 1, n
DO 20j = 1, n

DATA(ij) = TEMPDATA(ij)
20 CONTINUE

RETURN
END

SUBROUTINE SNRcalc(KTsnrrsnrnyquistn)

c THIS S/R CALCULATES THE AVERAGE SNR AS A FUNCTION OF
c RADIUS

REAL8 KTsnr(nn), rsnr(n/2)
INTEGER r
n2= n/2
n2pl =n2+1I
DO 10 r = 1, nyquist

nsnr = 0
DO 2Oi = 1, n

DO 20j = 1, n
x = floato - (n2pl))
y = float(i - (n2pl))
radius = sqrt(x**2.0 + y**2.0)
IF ((radius.GT.float(r-1)).AND.

+ (radius.LE.float(r))) THEN
nsnr = nsnr + 1
rsnr(r) = rsnr(r) + Krsnr(ij)

ENDIF
20 CONTINUE

rsnr(r) = rsnr(r)/nsnr
10 CONTINUE

RETURN
END
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SUBROUTINE Star(DATAn)

c THIS S/R CREATES A SIMULATED POINT SOURCE OR STAR

COMPLEX*16 DATA(nn)
n2pl =n/2+ 1
DO 10 i = 1, n

DO 10j = 1, n
x = floatG - n2pl)
y = float(n2pl - i)
IF ((x.EQ.0.0).AND.(y.EQ.0.0)) THEN

DATA(ij) = (1.0,0.0)
ELSE

DATA(ij) = (0.0,0.0)
ENDIF

10 CONTINUE
RETURN
END
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SUBROUTINE Writcfile(DATA1,data2,filel~file2,
+ nyquistn)

c THIS S/R WRITES THE DATA TO A FILE IN THE FORMAT REQUIRED
c BY A PROGRAM WHICH PRODUCES A CONTOUR PLOT OF THE
c IMAGE

COMPLEX*16 DATA1(nn)
REAL*8 data2(n/2-1)
REAL x, lambda, RO, pi
INTEGER r
CHARACTER*16 Muel, file2
COMMON IVARS2/DIAMOBSCURLAMB3DAR0,SECDIM4

PIXSCALE,TPFDIM,FILENAME

OPEN (UNIT=30,FELE=filel,STATUS='NEW')
OPEN (UNIT=40,FILE=file2,STATUS='NEW')
pi = acos(-1.OE+ 00)
DO 10 i = 1, n

DO 10j = 1, n
WRrrE(30,*) DATA1(ij)

10 CONTINUE
DO 20 r = 1, nyquist

x = r * (lambda/pixscale) *(180/pi) *3600.0

WRITE(40,*) x, data2(r)
20 CONTINUJE

RETURN
END
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APPENDIX E.. SPECIFIC KNOX-THOMPSON SUBROUTINES

cTHE FOLLOWING SUBROUTINES WERE GENERATED BY THE
c THESIS AUTHOR AND ARE USED BY THE KNOX-THOMPSON

cPROGRAM ONLY.

SUBROUTINE LIST

SUBROUTINE Initialize(OBJDATAGAUSSIANPUPIL.,F,
+ TEMPDATAfi~elfie2,fwdinv,
+ ln~nfamesnhotonnyquist,
+ offsetcentn)

c THIS S/R INiTALIZES SOME OF THE PROGRAM VARIABLES BY
c QWEARYING THE USER FOR INPUT. IT ALSO CREATES THE
c OBJECT' DESIRED BY THE USER BY CALLING EIER ASTEROID,

c BISTAR, OR STAR S/R.

INTEGER offset

CHARACT ER*1 cent, object
WRITE(*,*)"
WRiTE(*,*)'ENTER INTEGER OFFSET (< =4 AND <=#

READ(*,*)offset

wRIT E(*,*)YENTER INTEGER NUMBER OF SNAPSHOTS:'
READ(*',*)nframes
WRlTE*,*)'
W~f**)T2MlR INTEGER NUMBER OF OBJECT' PHOTONS PER'
WRITE(* )'SNAPSHOT:'
READ(*,)nphoton

WRITE'(*,*)'ENffER INTEGER NYQUIST VALUE:'
READf(*,*)flyqujst
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10 WRITE(*,*
WRITE(* )ENTER OBJECT TYPE: " A " FOR ASTEROID,'
WRITE*,*y" B " FOR BINARY STAR, OR " S " FOR STAR.'
R.EAD(*,40) object
]IF ((object.EQ.'a').OR.(object.EQ.'A)) THEN

CAL.L AST(OBJDATA GAUSSIAN,PUPILFTEMPDATA,
+ fwdinvInn)
ELSEIF ((object.EQ.'b').OR.(object.EQ.'B')) THEN

CALL Bistar(OBJDATAn)
ELSEIF ((object.EQ.'s').OR.(object.EQ.'S')) THEN

CALL Star(OBJDATAn)
ELSE

WRITE(*,*) 9INCORREC7, REENTER'
GOTO 10

ENDIF
20 WRITE(*,*)"

i&R1TE(* )-WOULD YOU LIKE THE DATA CENTROIDED? (Y/N)'
READ(,40) cent
EF ((cent..NE.'y).AND.(centNE.'Y')AND.
+ (cent.NE.'n').AND.(cent.NE.'N')) THEN

WR1TE(*,*)'INCORRECT, REENTER'
GOTO 20

ENDIF
WRIT-(*))Y'
wpD*,*)ENTER KT OUTPUT FILE NAME (16 CHAR'

READ(*,30) fMel

wRrrE(*,*)'ENTER KT SNR FILE NAME (16 CHAR'
WRITE(* )?M):'
READ(*,30) fide2

30 FORMAT(A16)
40 FORMAT(A1)

RETURN
END
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SUBROUTINE K~rrecon(KTPHASORI,IKTKrsnr,offset,
+ xvarrktrxvarikticounter,
+ nframesnyquistn)

c THIS S/R IS THE HEART OF THE KTr RECONSTRUCTION PROGRAM.
c IT DET ERMINES THE VARIANCE-WEIGHTED, NOISE-BIAS-
c CORRECTED CROSS-SPECTRUM OF THE DEGRADED IMAGE AND
c RECONSTRUCTS THE PHASEORS FROM THE AVERAGE OF THIS
c CROSS-SPECTRUM. THIS S/R IS CALLED ONCE FOR EACH

c OBJECT/POINT SOURCE SNAP SHOT TO DETEFRMINE A RUNNING
c AVERAGE CROSS-SPECTRUM AND W~IT THE LAST SNAP SHOT,
c THE PHASOR IS RECONSTRUCTED.

COMPLEX* 16 KTPHASOR(-n/2:n2-1,-nt2:n/2-1), CTEMP,
" IKT(-nt2:nt2-1,-nt2:nt2-1,-0:4,-4:4),
" I(-n/2:nt2-1,-nt2:n12-1), PTEMP1, PTEMP2
REAU*8 KTsnr(-n2.n12-1,-n2:n12-1), sigmar, sigmai,
" xvarrkt(-n/2:nt2-1,-nt2:n2-1,-0:4,-4:4), snr,
" xvarikt(-nt2:n/2-1,-nt2:n/2-1,-0:4,-4:4), sigma,
INTEGER r, di dj, offset
k =0
KTPHASOR(k,k) = (1.0,0.0)
DO 10 r = 1, nyquist
DO 10 ii = 0, r

IF (ii.EQ.0) THEN
lim= 0

ELSE
lim =-r

ENDIF
DO10b = lii, r

rad = sqrt(float(ii)**2.0 + float~jj)**2.0)
IF ((rad.LE.float(r)).AND.(rad.GT.float(r-1))) THEN

IF (icounter.EQ.nframes) nsnr = 0
DO 20 di = 0, offset
DO 20 dj = -offset, offset

drad = sqrt(float(di)**2.o + float(dj)**2.0)
IF ((drad.LE.float(r)).AND.

*+ (drad.LE.float(offset))) THEN
idi = ii - di
jdj = bj - dj
radd = sqrt(float(idi)**2.0 + floatojdj)**2.0)
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EF (radd.LE.float(r-1)) THEN
ic= r-ui

jHC = -b
IF (I(idijdj).EQ.(0.O,O.O))

+ I(idijdj) =(1.0,0.0)
IF (I(iijj).EQ.(O.O,0.0))

+ I(lijj) = (1.0,0.0)
CTEMP = (I(idijdj) * DCONJG(I(liijj))) -

+ DCONJG(I(didj))
IKT(idijdj,didj) = IKT(idijdj,didj) +

+ CTEMP
xvarrkt(idijdj,di,dj) = A

+ xvafrkt(idijdj,didj) +
+ (DEICEP)*.

xvarikt(idijdj,di~dj) =
+ xvarikt(idijdj,di~dj) +
+ (DIMAG(CTMP))**2.0

IF (icounter.EQ.nframes) THEN
nsnr = nsnr + 1
sigmar = dabs((xvafrkt(idijdj,didj) -

+ ((DREAL(IK.T(idijdj,di~dj)))**2.0)/
+ dfloat(nframes))Idfloat(nframes - 1))

sigmai = dabs((xvarikt(idijdj,didj) -

+ ((DllvAG(llKr(idijdj,di,dj)))**2.0)/
+ dfloat(nframes))/dfloat(nframes - 1))

sigma = dsqrt(sigmar + sigmai)
snr = (((ABS(IK.(idijdj,di~dj)))/

+ dfloat(nframes))Isigima)
+ dsqrt(dfloat(nframes))

KTsnr(iijj) = KTsnr(iijj) + snr
PTEMP1 = IKT(idijdj,di~dj)/

+ ABS(IKT(idijdj,didj))
PTEM72 = KTPHASOR(idijdj)
KTPHASOR(iijj) = KTPHASOR(iijj) +

+ ((snr**20) * (DCONJG(PTEMP1/PTEMP2)))
ENDIF

ENDIF
ENDIF

20 CONTIUE
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IF (icounter.EQ.nframes) THEN
KTsnr~iijj) = KTsnr(iijj)/nsnr
KTsnr(iHCqHC) =Klsnr(iijj)/nsnr
KTPHASUR(iijj) = KTPHASOR(iijj)I

+ ABS(KTPHASOR(iijj))
KTPHASQR(fiqCHC) =DCONJG(KTPHASOR(iijj))

ENDEF
ENDIF

10 CONTINUE
RETURN
END

135



APPENDIX F. SPECIFIC TRIPLE.CORREIATION SUBROUTINES

c THE FOLLOWING SUBROUTINES WERE GENERATED BY THE
c THESIS AUTHOR AND ARE USED BY THE TRIPLE-CORRELATION
c PROGRAM ONLY.

SUBROUTINE LIST

SUBROUTINE BSrecon(BSPHASORI,IBS,IDBS,BSsnroffset,
+ xvarrbs,xvanbsicounter,nframes,
+ nyquistnphotonn)

c THIS S/R IS THE HEART OF THE BS RECONSTRUCION PROGRAM.
c IT DETERMINES THE VARIANCE-WEIGHTED,
c NOISE-BIAS-CORRECTED BISPECTRUM OF THE DEGRADED IMAGE
c AND RECONSTRUCTS THE PHASEORS FROM THE AVERAGE OF
c THIS BISPECTRUM THIS S/R IS CALLED ONCE FOR EACH
c OBJECT/POINT SOURCE SNAP SHOT TO DETERMINE A RUNNING
c AVERAGE BISPECTRUM AND WITH THE LAST SNAP SHOT, THE
c PHASOR IS RECONSTRUCTED.

COMPLEX*16 BSPHASOR(-n/2:n/2-1,-n/2:n/2-1), CTEMP,
+ PTEMP2, IBS(-n/2:n/2-1,-n/2:n/2-1,0:4,-4:4),
+ PTEMP1, I(-n/2:n/2-1,-n/2:n/2-1), IDBS(0:4,-4:4)
REAL*8 BSsnr(-n/2:n/2-1,-n/2:n/2-1), sigmar, sigmai,
+ snr, xvarrbs(-n/2:n/2-1,-n/2:n/2-1,0:4,-4:4),
+ sigma, xvanbs(-n/2:n/2-1,-n/2:n/2-1,0:4,-4:4)
INTEGER r, di, dj, offset
k=0
loop = 1
BSPHASOR(k,k) = (1.0,0.0)
DO 10 r = 1, nyquist
DO 10 ii = 0, r
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IF (ui.EQ.0) TMEN
uim=O0

ELSE
Jim =-r

ENDIF
DO 10 = lim, r

rad = sqrt(float(ii)**2.o + float~jj)**2.o)
IF ((rad.LE.float(r)).AND.(rad.GT.float(r-1))) THEN

IF (icounter.EQ.nframes) nsnr = 0
DO 20 di = 0, offset
DO 20 dj = -offset, offset

IF (loop.EQ.1) THEN
IDBS(didj) = IDBS(di~dj) + I(di~dj)

ENDIF
drad = sqrt(float(di)**2.0 + float(dj)**2.0)
IF ((drad.LE.float(r)).AND.

+ (drad.LE.float(offset))) TIHEN
idi = ii - di
jdj = hi - dj
radd = sqrt(float(idi)**2.0 + floatajdj)**2.0)
IF (radd.LE.float(r-1)) THEN

iHC =-ii
jHC = -
IF (I(idijdj).EQ.(0.0,0.0))

+ I(idijdj) = (1.0,0.0)
IF (I(iijj).EQ.(0.0,0.0))

+ IOUij) = (1.0,0.0)
CTEMP = I(idijdj)

+ DCONJG(I(iijj))*
+ I(di,dj) - (ABS(I(idijdj)))**2.0 -

+ (ABS(I(iijj)))**2.0 -

+ (ABS(I(di,dj)))**2.0 + (2.0 * nphoton)
IBS(idijdj,di~dj) = IBS(idijdj,di,dj) +

+ =T
xvarrbs(idijdj,di,dj) =

+ xvarr~bs(idijdj,di,dj) +
+ (DREAL(UrEMP))* *2.0

xvanibs(idijdj,di,dj)=
+ xvaribs(idijdj,di,dj) +
+ (DIMAG(CT7EMP))**2.0
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IF (icounter.EQ.nframes) THEN
nsnr = nsnr + 1
sigmar = dabs((xvarrbs(idijdj,di~dj) -

+ ((DREALkIBS(idijdj,di~dj)))**2.0)/
+ dfloat(nframes))/dfloat(nframes - 1))

sigmai = dabs((xvaribs(idijdj,didj) -

+ ((DIMAG(IBS(idijdj,di,dj)))**2.0)/
+ dfloat(nframes))/dfloat(nframes - 1))

sigma = dsqrt(sigmar + sigmai)
snr = (((ABS(IBS(idijdj,didj)))/

+ dfloat(nframes))Isigmna)
+ dsqrt(dfloat(nframes))

BSsnr(iijj) = BSsnr(iijj) + snr
PTEMP1 = IBS(idijdj,di~dj)/

+ ABS(IBS(idijdj,di~dj))
FMTEM2 = BSPHASOR(idijdj)

+ * IIDBS(didj)/ABS(IDBS(di~dj))
B3SPHASOR(iijj) = BSPHASOR(iijj) +

+ ((snr**2.0) * (DCONJG(PTEMP1IPTEMP2)))
ENDIF

ENDIF
ENDIF

20 CONTINUE
IF (loop.EQ.1) loop = 2
IF (icounter.EQ.nframes) THEN

BSsnr(ii,jj) = BSsnr(iijj)/nsnr
BSsnr(iCjHC) =BSsnr(iijj)/nsnr

BSPHASOR~iijj) =BSPHASOR(iijj)/

+ ABS(BSPHASOR(iijj))
BSPHASOR(HCjHC) =DCONJG(BSPHASOR(iijj))

ENDIF
ENDIF

10 CONTINUE
RETURN
END
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SUBROUTINE Initiaiize(OBJDATAGAUSSIANPUPIL,,F,
+ TEM[PDATAfelfie2,fwdinvln,
+ nfraniesnphoton,nyquistoffset,
+ centn)

c THIS S/R INITIALIZES SOME OF THE PROGRAM VARIABLES BY
c WUEARYING THE USER FOR INPUT. IT ALSO CREATES THE
c OBJECT DESIRED BY THE USER BY CALLING EMTHER ASTEROID,
c BISTAR, OR STAR SIR.

INTEGER offset
CHARACTER*16 Muel, fide2
CHARAC2TER*l cent, object
'WlnTE( *9
WRnMl*,*)TENTER INTEGER OFFSET (< = 4):'
READ(*,*)offset
WRITE(*,)p
WR1TE(*,*) ENTER INTEGER NUMBER OF SNAPSHOTS:'

RADI(*,*)nframes
WRITE(*,*yq
NVRIT(*,*)'ETER INTEGER NUMBER OF OBJECT PHOTONS PER'
WRlTE(*,*)'SNAPSHOT:'
READ(*,*)nphoton
WRrrE(* t*)t
wRTE(*,*)'ENTER INTEGER NYQUIST VALUE:'
READ(*,l*)nyquist

10 WRITE(*,*)'
WRT(,*'NE OBJECT TYPE: " A " FOR ASTEROID,'
WRITE(*,*yIB B" FOR BINARY STAR, OR " S " FOR STAR.'
READ(*,40) object
IF ((object.EQ.'a').OR.(object.EQ.'A')) THEN

CALL AST(OBJDATAGAUSSIAN,PUPIL,FTEM[PDATA,
+ fwd,invln,n)
ELSEIF ((object.EQ.'b').OR.(object.EQ.'B')) THEN

CALL Bistar(OBJDATAn)
ELSEIF ((object.EQ.'s').OR.(object.EQ.'S')) THEN

CALL Star(OBJDATAn)
ELSE

WRIT*,*)'INCORRCT, REENTER'
GOTO 10

ENDIF
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20 WRrrE(*,*)t'
WRITE(*,*)'WQUID YOU LIKE THE DATA CENTROIDED? (Y/N)'
READ(*,40) cent
IF ((cent.NE.'y').AN.(cent.NE.'Y).AND.
+ (cent.NE.'n').AND.(cent.NE.'N')) THEN

WDJTE(, )'NCORREC, REENTER'
GOTO 20

ENDIF
WRJTE(*)
w[E(*,*)IENTER TC OUTPUT FILE NAME (16'
W~E*,*)(CHAR MAX):'
READ(*,30) M~el
WR1TE(*,*)v ,
W~n**)ENMR TC SNR FILE NAME (16 CHAR'
WRrM*,*MAX):'
READ(*,30) file2

30 FORMAT(A16)
40 FORMAT(A1)

REThRN
END
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APPENDIX G. ATMOSPHERIC DEGRADATION SUBROUTINES

c THE FOLLOWING SUBROUTINES WERE PROVIDED BY CAPTAIN
c CHUCK MATSON AND MS. IDA DRUNZER OF WL1ARCI AND
c MODIFIED FOR USE WITH THE KNOX-THOMPSON AND
c TRIPLE-CORRELATION IMAGE RECONSTRUCTION PROGRAMS.
c THESE SUBROUTINES ARE REQUIRED FOR BOTH PROGRAMS.

SUBROUTINE LIST

SUBROUTINE PHSUB(SEIMG,FTEMPDATAOBJARR,
+ icounternframes,nyquist,
+ fwdinvln,n,mseed)

c FUNCTION: Creates an image of a object located in space by filtering a
c single snapshot of an object with a phase screen.

c ORDER OF EVENTS TO OBTAIN IMAGE:

c - Create an object
c - Create Gaussian Array
c - Expose array to what the atmosphere will do to the object
c (Correlation Filter Function)
c - Expose array to the stipulations of the telescope
c - Autocorrelate the object (incoherent transfer function)
c - Multiply the object by the phase screen to obtain the Image

c DICTIONARY:

c DIAM - Telescope pupil diameter
c ICOUNTER - Number of user chosen iterations of
c phase screens to process
c ISEED - Seed to be used for random number
c generator
c LAMBDA - Center wavelength
c MU - Mean
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c PIXSCALE - Corresponds to each pixel in cycles/m
c RU - Variable characterizing the strength of atmospheric turbulence
c with respect to the optical system
c TPFDIM - Dimension for pupil of telescope
c PCOUNT - The actual number of photons per frame
c NFRAMES - The number of frames to process
c NPHOTON - The number of photons the user wants per frame
c NKL - The number of Karhunen-Loeve functions projected off and

added back in the phase map.

PARAMETER (IDIM = 64,LDIM = IDIM*IDIM)
PARAMETER (IDIM2 = 64,LDIM2 = IDIM2*IDIM2)
PARAMETER (IDIM1 = .7071*IDM2)
PARAMETER (IWDIM = 5*IDIM/2,IWDIM2 = 5DM M2/2)
PARAMETER (NI = 11,N2 = (N1/2) + 1,
+ N3 = (N1- 1)*(N1 + 2)/2)
PARAMETER (N4 = (NI - 1)*(N1 + 3)/4)
PARAMETER (NKL = 20)

CHARACTER* 16 FILENAME
CHARACTER*1 TILT

COMPLEX*16 PHAMAP(LDIM2),PS1(LDIM),IMAGE(LDIM),
+ OBJARR(LDIM),PS2(LDIM2),SEIMG(LDIM)

REAL POIARRAY(LDIM),RVAR,MULT1,MULT2,LAMBDA,
+ PIXSCALEZERO,SIZE,DIAM,TPFDIM,RO,INNERSCALE,
+ CORR(LDIM2),SECDIM,OUTERSCALE,OBSCURRARRAY(LDIM)

INTEGER PCOUNT

DIMENSION ZKLMAP(IDIM2,IDIM2,NKL),LINPTR(N3),BVAL(N3)

COMMON NARS/ZERO,RMAXRMIN,CMINUS1,RCONST1,FCONST1,PI
COMMON /VARS2/DIAM,OBSCUR,LAMBDA,R0,SECDIM,
+ PIXSCALETPFDIM,FILENAME

c Initialize variables

CMINUSI= (-1.EO,0.EO)
ZERO = 0.E0
MU = O.EO
SIGMA = 1.EO
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PI = DACOS(-1.OD+00)
JDIM = IDIM
JDIM2 = IDIM2
IC = IDIMt2+I
INNERSCALE = .0001
OUTERSCALE = 10000.EO
MULTI = 5.92/INNERSCALE
MULT2 = (2.0*PI)/OUTERSCALE

c Only do certain subroutines the first time calling this subroutine (when wanting
c several snapshots).

11 CONTINUE
IF((ICOUNTER.EQ.1).AND.(MSEED.EQ.1)) THEN

FILENAME = 'phvar2.d'
OPEN(10,FILE=FILENAME,STATUS= 'OLD',ERR=500)
READ(10,*)DIAM,OBSCUR,LAMBDA,R0
CLOSE(UN T= 10)

c Call the subroutine which prompts the user for all names and variables that the
c subroutine will need in order to run.

CALL PARAM2(IDIM,NYQUISTTILTISEED)

c Generate a filter function to be used as a multiplier on a complex gaussian
c array to be stored in array CORR. However, only call the filter function on
c multiple runs if there are changing values for the width of the object and RD.

CALIFILT2(RARRAY,CORRLDIM2,IDIM2,MULT1,MULT2,PIXSCALE,
+ ZERO,RO)

c Calculate the simulated size of the telescope (tpfdim). Compare it with the
c dimension that is know (size). If size is less than tpfdim, there will be an error
c due to the array being too small to store the data from the fourier transform,
c and thus, data will be truncated.

SIZE = (IDIM2)-1
IF(SIZE.LT.TPFDIM) THEN

wRrE(*,*)"
IF(SIZE.LE.(.5*TPFDIM)) THEN

WR1TE(*,*)'ERROR. IMAGE ARRAY SIZE MUST BE
+ 512x512.'

143



ELSE
WRITE(*,*)TERROR. IMAGE ARRAY SIZE MUST BE

+ 256x256.'
ENDIF
wRrCE(*,)''
GOTO 400

ENDIF

c Call BGSCREEN subroutine first time through phase screen. The BGSCREEN
c subroutine manipulates the phase map to result in a phase map with proper
c statistics.

CALL BGSCR2(BVALZKLMAP,LINPTRIDIM2)

c End the if statement if first time through the subroutine.

mseed = mseed + 1

ENDIF

c Get Gaussian numbers and then multiply these two numbers by the correlation
c filter function to obtain the phase map (PHAMAP).

DO 20 J = 1,LDIM2
CALL GAUSS(MU,SIGMA,R1,R2,PI,ISEED)
PHAMAP(J) = DCMPLX(RI*CORR(J),R2*CORR(J))

20 CONTINUE

c Get phase screen which is in the frequency domain. Next perform the inverse
c FFT on array.

CALL FFI2D(PHAMAPTEMPDATA,F,ln,invn)

DO 25 J = 1, LDIM
PHAMAP(J) = PHAMAP(J)*(DFLOAT(LDIM))

25 CONTINUE
CALL PROJ(PHAMAP,BVALZKLMAP,LINPTR,iseed,
+ NKLR0,N1,N2,N3,N4,IDIM2,PI,PIXSCALE,TILT)
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c Calculate ae**(i*realization of phase screen). Take cosine and sine of every
c real element in the array and put into the phase screen array.

DO 60 J = 1,LDIM2
PS2(J) = DCMPLX(DCOS(DREAL(PHAMAP(J))),

+ DSIN(DREAL(PHAMAP(J))))
60 CONTINUE

c Perform the Telescope Pupil Function (TPF) on the phase map to obtain the
c coherent transfer function. First, call this routine to cut out chunk of phase
c screen based on Telescope Pupil Function of D/LAMBDA to be stored in array
c PSi.

CALL TPF2A(PS1,PS2,IDIMIDIM2,TPFDIMSECDIM)

c Calculate the incoherent transfer function by multiplying phase screen by the
c auto correlation filter function. Begin by taking the Fourier Transform of the
C phase screen.

CALL FFT2D(PS1,TEMPDATAFln,fwdn)

c Take the magnitude squared of the array and put the data into the real part of
c the phase screen.

DO 120 J = 1,LDIM
PSI(J) = DCMPLX(DREAL(DCONJGPS1(J))*PS I(J)),0.eO)

120 CONTINUE

CALL FFT2D(PS1,TEMPDATAF,ln,invn)

c Divide the phase screen by the value at dc in order to normalize the array by
c that value (dcval).

TEMP = DREAL(PS1(IC+(IC-1)*IDIM))
DO 125 J = 1,LDIM

PS1(J) = PS1(J)/TEMP
125 CONTINUE
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c Incoherent transfer function is completed. Now get the image in the fourier
c domain by multiplying the object and the phase screen to get the image.

DO 160 J = 1,LDIM
IMAGE(J) = (PS1(J)*OBJARR(J))

160 CONTINUE

CALL FFr2D(IMAGETEMPDATA,F,n,invn)

c Call the function, poisson, which will return as a floating point number in
c integer value that is a random deviate drawn from a Poisson distribution of
c mean equal to image value, using another real function, uniform, as a source
c of uniform random deviates.

PCOUNT = ZERO

DO 230 J = 1,LDIM
RVAR = DREA,(IMAGE(J))
IF(RVAR.LE.0.0) THEN

POIARRAY(J) = ZERO
ELSE

ITEMP = POISSON(RVARISEED)
POIARRAY(J) = DFLOAT(1TEMP)
PCOUNT = PCOUNT + ITEMP

ENDIF
SEIMG(J) = DCMPLX(POIARRAY(J),ZERO)

230 CONTINUE

300 RETURN
400 WRITE(*,*)"

WRn[E(*,*)'STOPPING PROGRAM DUE TO ERROR'
STOP

c Error Statments

500 CONTINUE
WRITE(*,*)"
WRIT(*,*) ERROR, THIS FILE DOES NOT EXIST. REENTER.'
WRITE(*,*)'
GOTO 11

800 CONTINUE
END
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SUBROUTINE BGSCR2(bvalzklmap,linptrnsid)

c This program does the things that result in a phase screen with proper statistics

parameter(lu = 12,lu4 = 18)
parameter(nr= 100,nkl= 20)
PARAMETER (N1 = 11, N2 = (Nl/2) + 1,
+ N3 = (NI - 1)*(N1 + 2)/2)
PARAMETER (N4 = (NI - 1)*(N1 + 3)/4)
real bval(n3),bvec(n2,n3),rmap(nrn4),nsid1
dimension zklmap(nsidnsid,nkl)
dimension ival(n3,3),ir(n3),linptr(n3)
character* 16 fname,noname
nsidl = .7071*(nsid - 1)
fname = 'eigen.d'
noname = 'Idrad.d'

c Dictionary

c bval = contains eigenvalues of covariance matrix
c bvec = contains eigenvectors of covariance matrix
c ir = pointers
c ival = pointers
c linptr = pointers
c n1 = number of azimuthal orders to be used in the Zernike functions
c nkl = number of Karhunen-Loeve functions projected off and added
c back
c nr = number of points in rmap (100 is more than enough)
c nsid = dimension of side of screen
c rmap = stored radial cut of Karhunen-Loeve functions, computed in
c michelin
c zklmap = stored Karhunen-Loeve functions

open(lu,file = fname,form='formatted',status ='old')
rewind(lu)
read(lu,*) linptr
read(lu,*) bval
read(lu,*) ival
do 95 if=f1,n2

do 90 j =1,n3
read(lu,*) bvec(ij)

90 continue
95 continue
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10 format(6E4.9)
open(1u4,fie=noname,form= 'formatted',status= 'old')
rewind (1u4)
do 80 i= 1,nr

do 85 j =1,n4
read(1u4,*) rmap(ij)

85 continue
80 continue

read(1u4,*) ir
call kelp(zklmaprmapirhiallinptrn3,n4,
+ nsidnrnkl)
return
end

SUBROUTINE FADD(bmap,zklmap,iqnsidnklsum)

c bump is the phase screen

complex* 16 bmap(nsidnsid),sum
dimension zklmap(nsidnsidnkl)
data pi/3.l4l59265358979/

do 10 i = 1,nsid
do 20 j = insid

bmap(ij) = bmap(ij) + sum*zlmap(ij,iq)
20 continue
10 continue

return
end

SUBROUTINE FILT2(RARRAYCORRLDIM2,IDIM2,MULT1,
+ MULT2,PIXSCALEZERO,RO)

c Subroutine Function: This function generates an array representing the effects
c of what the atmosphere will do to an object
c when it passes through it.

REAL RARRAY(LDIM2),CORR(LDIM2),MULT1,MULTZRCONST,
+ PIXSCALE-,ZERO,ROFCONSTRARRAYW
INTEGER JOFFSET
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c Calculate the radial average of an input image.

c ARRAYS: CORR(LDIM2) - idim2 x idim2 array
c RARRAY(IDIM2) - this is a small work array
c that needs to be at least
c IDIM2 in size
c other variables: IDIM2 - x dimensionl
c RCONSTRCONST2 - real constants
c
c load CORR with X (J) indicies squared

* FCONST = .1517
DO 10 J=1,IDIM2

JOFFSET= (J-1)*IDIM2
R=FLOAT( J-(IDIM2t2+ 1))
RCONST=R*R

DO 15 I=I,IDIM2
CORR(I+JOFFSET) = RCONST

15 CONTNUE
10 CONTINUE

c Add to Li, Y (I) indicies squared (one column of Y indicies stored in L2)

DO 20 I=1,IDIM2
R=FLOAT( I-(IDIM2/2+ 1))
RARRAY(I) = R*R

20 CONTINUE
DO 30 J=I,IDIM2

JOFFSET=(J-1)*IDIM2
DO 40 1 = 1,IDIM2

CORR(JOFFSET + I) = RARRAY(I) + CORR(JOFFSET + I)
40 CONTINUE
30 CONTINUE

c Move the scaling array to another array in order to do calculations for the filter
c function

DO 50 1 = 1,LDIM2
RARRAY(I) = CORR(I)

50 CONTINUE
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c Multiply the scaling array by the correlation filter function

RCONST = (-11.EO/12.EO)
DO 60 1 = 1,LDIM2

RARRAY(I) = (RARRAY(I)+(MULT2*MULT2))**RCONST
60 CONTINUE

ARRAYW = PIXSCALE*IDIM2
RCONST = (R0/ARRAYW)**(-5.E0/6.EO)
DO 70 1 = 1,LDIM2

RARRAY(I) = (RARRAY(I)*RCONST)*FCONST
70 CONTINUE

c Set the middle point in array to zero to normalize the array by that value

RARRAY(ID2(IDIM2 2)+(IDIM2/2+ 1)) = ZERO

c Calculate second part of correlation filter function and multiply it by the first
c part to complete the filter array.

RCONST = -2.0*(MULTI*MULT1)
DO 90 I= 1,LDIM2

CORR(I) = (EXP(CORR(I)/RCONST))*RARRAY(I)
90 CONTINUE

900 CONTINUE
RETURN
END

SUBROUTINE GAUSS(MU,SIGMA,RNUM1,RLJ3M2,PI,iseed)

c PURPOSE:

c GET GAUSSIAN DISTRIBUTED RANDOM NUMBER WITH MEAN MU
c AND STANDARD DEVIATION SIGMA

REAL MUSIGMA,Y1,YZRNUM1,RNUM2,PITWOPI

TWOPI = 2.eO*PI

YI= uniform(iseed)
Y2= uniform(iseed)
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c Calculate first random number

RNUM1 = MU + SIGMA*SQRT(-2.0*ALOG(Y1))*COS(TWOPI*Y2)

c Calculate the second random number

RNUM2 = MU + SIGMA*SQRT(-2.0*ALOG(Y1))*SIN(TWOPI*Y2)

RETURN
END

SUBROUTINE INPROD(bmapzklmap,iq,nsid,nklzap)

complex* 16 bmap(nsidnsid)
complex* 16 zap
dimension zklmap(nsidnsid,nld)

zap = (0.0,0.0)
area - 0.0
do 10 i = 1,nsid

do 20 j = 1,nsid
zap - zap + bmap(ij)*zldmap(ij,iq)
area = area + (zklmap(ij,iq) )**2

20 continue
10 continue

zap = zap/area

return
end
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SUBROUTINE KELP(zldmaprmap,irnivLhlnptr,

+ n3,n4nsid~nrinl)

c zklmap is the map of the k-i functions, sigh

dimension rmap(nrn4),ir(n3)
dimension zklmap(nsid~nsidnk)
dimension ival(n3,3),linptr(n3)
data pit3.1415926535897 91
icent = nsidt2 + 1
dx = l.OI(nsidl2 - 1)
dr = l.OI(nr - 1)
do 15 iq = 1,nkl

m = ival( linptr(iq),1)
iod = ival( linptr(iq),2)
ipq = ir(iq)
do 10 i = l,nsid

X = (i - icent)*dx
do 20 j = 1,nsid

zklmap(ij,iq) = 0.0
y = aj - icent)*dx
r = sqrt(x**2 + Y**2)
th =0.0
if( r.Ie.1.0) then

if( r.gt.0.0) then
th = atan2(yx)
if(th.Ie.0.O) th = 2.0*pi + th

else
th =0.0

endif
if(r.lt.0.99999) then

ki = int(rldr) + 1
k2 =kl+1I
ri = (ki - 1)*dr
r2 = (k2 - 1)*dr
coef 1 = (r2 - r)Idr
coef2 = (r - rl)/dr
top = coefl*rmap(kl,ipq) + coefZrmap(k2,ipq)

else.
top = rmap(nripq)

endif
if(iod.eq.1) zz = cos(m*th)
if(iod.eq.2) zz = sin(m*th)
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zklmap(ij,iq) = zz*top
endif

20 continue
10 continue
15 continue

return
end

SUBROUTINE PARAM2(IDIMNYQUISTTILTISEED)

c The function of this subroutine is to ask the user various questions about the
c subroutines he or she wishes to use and what values he or she wants to assign
c to the variables in the program.

REAL DIAM,LAMBDAR0,PIXELNUMOBSCURPIXSCALE,
+ SECDIMTPFDIM
INTEGER IDIM
CHARACTER* 16 FILENAME
CHARACTER* 1 ANSWERFLAGTILT
COMMON/VARS2/DIAM,OBSCUR,LAMBDA,R0,SECDIM,
+ PIXSCALETPFDIMFILENAME

WRITE(*,*)"
WRITE(*,*)THE DEFAULT VALUES FOR THIS PROGRAM ARE AS

+ FOLLOWS:'
WRITE(*,*)"
WRlrE(*,*)' TELESCOPE DIAMETER: ',DIAM
WRIT*,*)' CENTER WAVELENGTH: ',LAMBDA
WRITE(*,*)' RO: ',RO
WRITE(*,*)' TELESCOPE SECONDARY DIAMETER:',OBSCUR

20 CONTINUE
WRITE(*,*)")
WR1TE(*,*)'USE THE DEFAULT VALUES? (Y/N)'
READ(*,14) FLAG
IF(((FLAG.NE.'Y').AND.(FLAG.NE.'y')).AND.
+ ((FLAG.NE.'N').AND.(FLAG.NE.'n'))) THEN

WRITE(*,*)"'
WRITE(**)'YOUR ANSWER HAS TO BE EITHER Y OR N.

+ REENTER'
FLAG = "

GOTO 20
ENDIF
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30 CONTINUE
IF((FLAG.EQ.'N').OR.(FLAG.EQ.'n'))THEN

IYVfl7(*,*)yI

WR1TE(l)' A: ALL VARIABLES'
WRITE(*,*)' D: TELESCOPE DIAMETER'
WRlTE(*,*)' W: CENTER WAVELENGTH (LAMBDA)'
WRITE(* *)' R: RO'
WRIT7E(*,)' S: SECONDARY DIAMETER'
WRlTE(,) "
WRITE(*,)VWHCH VALUE WOULD YOU LIKE TO CHANGE?'
READ(*,14) ANSWER
EF(((ANSWER.NE.A).AND.(ANSWER.NE.'a'))AND.

+ ((ANSWER.NE.'D').AN.(ANSWER.NE.'d')).AND.
" ((ANSWERYNE.V)AND.(ANSWER.NE.I'))AND.
" ((ANSWER.NE.'W).AND.(ANSWER.NE.'w')).AND.
" ((ANSWER.NE.'R').AND.(ANSWER.NE.'r'))AND.
" ((ANSWER.NE.'S')AND.(ANSWER.NE-'s')))THEN

WRITE(*,*)"'
WRITE(*,*)-ANSWER IS NOT A CHOICE. REENTER'
GOTO 30

ENDIF
'WRITE(*,*)"'
WRITE(*,*) THE CURRENT VALUES ARE:'

WRITE(,)9 TELESCOPE DIAMETER: ',DIAM
WR1TE(*,*)9 CENTER WAVELENGTH: ',LAMBDA
WRlTE(,)' RO: ','RO
WRITE(*,*)' SECONDARY DIAMETER ',OBSCUR

EF((ANSWER.EQ.'A').OR.(ANSWER.EQ.'a'))THEN
Wn.(*,*)'INPUni THE FOLLOWING'

READ(*,100) DIAM
WRITE(*,*)'
Wn(*,*)'ETR NEW CENTER WAVELENGTH:'
READ(*,100) LAMBDA
WhRrrE(*,*)"
WRIT*,*)'ENTElR NEW RO:'

RAD(*,100) RO
wNRrrE(*,*)"
WRITE(*,)'ENTER NEW TELESCOPE SECONDARY DIAM:'
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READ(*,100) OBSCUR
ELSEIF((ANSWER.EQ.'D').OR.(ANSWER.EQ.'d'))THEN

'WRITE(**) 9
WRITE(* *)ENTER NEW TELESCOPE DIAMETER:'
READ(*, 100)DIAM

ELSEEF((ANSWER.EQ.'W).OR.(ANSWER.EQ.'w'))THEN

W~T(,* NE NEW CENTER WAVELENGTH:'
READ(*,100) LAMBDA

ELSEIF((ANSWER.EQ.'R').OR.(ANSWER.EQ.'r'))THEN
WRITE(*,*"

WRTE*,*) ENTER THE NEW RO:'
READ(,100)RO

ELSEEF((ANSWER.EQ.'S').OR.(ANSWER.EQ.'s'))THEN
WlRrrE(*,*)9 9
W~M**TM THE NEW SECONDARY DIAMETER:'
READ~(*,100) OBSCUR

ENDIF
50 CONTINUE

WRITE(*,*y WOULD YOU LIKE TO CHANGE ANY OTHER VALUE?
+ (Y/N)'

READ(*,14)ANSWER
IF(((ANSWER.NE.'Y)AND.(ANSWER.NE.'y')).AND.

+ ((ANSWER.NE.'N').AND.(ANSWER.NE.'n')))THEN
W;RITE(*,*)9 9
WR1TE(*,*)'YOUR ANSWER HAS TO BE EITHER Y OR N.

+ REETER'
GOTO 50

ENDIF
EF((ANSWER.EQ.'Y).OR.(ANSWER.EQ.'y'))THEN

GOTO 30
ENDIF
OPEN(UNIT= 10,FILE=FILENAME-,FORM= 'FORMMTTED',

+ STATUS = 'UNKNOWN')
RE WIND( 10)
WRITE(10,*)DLAM,OBSCUR,LAMBDA,RO

0 CLOSE(UNIT= 10)
ENDIF

WRIE(**)MTERTHE NUMBER OF PIXELS PER RO:'
READ( ,*)PIXEL.NUM[
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w~flTE(*,*)'ENTER SEED VALUE:'
READ(*,*)ISEED
PDXSCALE = RO/PIXELNUM
TPFDIM - nint(DIAW*PXELNUM/RO)
SECDIM = nint(OBSCUR*PIXELNUMRO)

60 CONTINUE
65 CONTINUE

WRITE(**Y'
WRITE( * *)DO YOU WISH TO INCLUDE X/Y TILT (Y/N)'

RAD(*,14)TJLT
IF(((TIT.NE.'Y')AND.(TIT.NE.Y)).AND.

+ ((TIT.NE.'N').AND.(TILT.NE.'n')))THEN
WRnTE(*, *)9 9
WR1TrE(*,*)PYOUR ANSWER MUST BE EITHER Y OR N.

+ REENTER'
GOTO 65

ENDIF

c Check the value for nyquist to assure it is equal to tpfdim

IF(NYQUIST.NE.TPFDIM GOTO 999

RETURN

c Format Statements

14 FORMAT(A1)
100 FORMAT(E11.4)
110 FORMAT(I6)

c Error statements

999 W~nE*,*)9 v

WRnTE(*,*) tERROR. VALUE FOR NYQUIST MUST EQUAL
+ TO:',TPFDIM
+ ,'NOT ',nyquist, '.'

WRI 1E(*,*) TPROGRAM STOPPING. CHANGE NYQUIST.'
STOP
END
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SUBROUTINE PROJ(bmapbvaLzlmphnptrwed
+ nkl~rOnl,n2,n3,n4,idimn2,pipxsale,tilt)

c The function of this subroutine is to project off the low-order Karhunen-Loeve
c functions and then adds them back with the proper strength.

c nI is the number of azimuthal orders, bmap is the phase screen

complex* 16 bmap(idim2,idim2),zap,sum
dimension bval(n3),linptr(n3)
dimension zlmap(idim2,idimn2nkl)
real xy~vpi~twopi~pixscale,dr0,rO
integer izern,idim.2
character tilt

izern=5
twopi =2.eO*pi

drO = (pixscale*idim2)/rO
DO 10 i =1,izern

c A random size is generated for each karhunen function

X = sqrt(bval(linptr(i))
y = 0.eO
yi =O.eO
mu = 0.eO
sigma = X
call gauss(musigmayyi,pi,iseed)
sum = cmplX(YYI)
sum = sum*(drO**.83333333)
call inprod(bmap,zklmap,i,idim2,nkl,zap)

c The function is projected out

if(tilt.eq.'N'.or.tilt.eq.'n') then
if(i.le.2)sum = 0.0

endif
sum = sum - zap
call fadd(bmap,zklmap,i,idim2,nl,sum)

10 CONTINUE
RETURN
END
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SUBROUTINE TPF2A(PS1,PS2,IDIDIM2,TFDIM,SECDIM)

c Function: The function of this subroutine is to cut out a portion of array with
c the dimension of TPFDIM and put the data into an array of zeros.

COMPLEX*16 PSI(IDIDIM),PS2(IDIM2IDIM2)
REAL TFDKMSECDIM
INTEGER ICJIC2

IC =IMM + I
IC2 = IDIM2/2 + 1

c Zero out psi to ensure that no reminents of previous phase screen is left over.

DO 10 J = 1,113IM
DO 10 K = 1,113M

PS1(J,K) = (0.0,0.0)
10 CONTINUE

c Divide the telescope pupil dimension by 2 in order to obtain the radius instead
c of the diameter of the pupil.

TFD1M2 = TFDIM/
SECDIM2 = SECDIM/2

EF(SECDIM.EQ.0.0)PS1(ICIC) =PS2(IC2,IC2)

c Now insert the phase screen into the larger array. The smaller array is the data
c that this telescope is able to see due to the inhibition of its size.

DO 20!1 = 0, TPFDIM2
DO 20 J = 0, TPFDIM2

IF((I**2 + J**2)LETPFDIM2**2) THEN
IF((I**2 + J**2).GT.SE(CJ}2**2) THEN

PS1(IC+ I,IC+J) = PS2(1C2+1IC2+J)
PS1(IC+I,IC-J) = PS2(IC2+I,IC2-J)
PS1(IC-I,IC+J) = PS2(1C2-I,1C2+J)
PSI(IC-I,lC-J) = P52(1C2-1I1C2-J)

ENDIF
ENDIUF

20 CONTINUE
RETURN
END
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FUNCHON GAMMLN(xx)
real cof(6),stp,hallonefpf~tmpser
data cofstpI76.18009173d0,-86.50532033d0,

" 24.01409822d0,-1.23 17395 16d0,. 120858003d-2,
+ -.536382d-5,2.50662827465d0/
data halfone,fpf/0.5d0, .OdO,5.5d01

x = xx - one
tmp =x+ fPf
tmp = (x + half)*log(tmp) - tmp
ser = one

do 10 j = 1,6
x = x + one
ser = ser + cofoj)/x

10 continue

gammin = tmp + Iog(stpser)

return

end

REAL FUNCflON POISSON(pmean, iseed)

c mean of poisson distribution

real pmean

c Seed for random number generator

integer iseed

c Summary of purpose

c Generate a random number with a poisson distributionof mean pmean (poisson
c deviate)

C Author

c numerical recipes, p207, routine poidev.for
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c Modifications

c 13 nov, 1987: pat fitch
c 1988: erik m johansson - fixed integer conversion problem with maxint

c Routines called

c uniform
c gammln

c (c) Copyright 1987 the Regents of the University of California. All rights
C reserved.

c This software is a result of work performed at Lawrence Livermore National
c Laboratory. The United States Government retains certain rights therein.

real pi
parameter (pi=3.141592654)

c maxint is the largest real number which can be converted to an integer without
c resulting in an arithmetic error (32 bits)

real maxint
parameter (maxint = .214748352e10)

real pexpmean, oldmean, t, em, sq, alxm, y, gammln,
+ uniform
integer times
data oldmean I-I.
if(pmean.lt. 12.0)then

c Use direct computation method

if(pmean.ne.oldmean) then

c New mean, calculate the exponential

oldmean = pmean
pexpmean= exp(-pmean)

endif
em = -1.0
t = 1.0

2 em =em + 1.0
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t= t*uniform(iseed)
if(t.gt-pcxpmean) go to 2

else
if(pmean.ne.oldmean) then

oldmean = pmean
sq = sqrt(2.O*pmean)
abxm= alog(pmean)

c Natural log of gamma function = gammln

pexpmean= pmean~aixm - gammln(pmean+ 1.)
* endif

times = 0

1 y = tan( pi* uniform(iseed))
times = times + 1
if (times .ge. 1000) then

write(*,*)ERROR: STUCK IN LOOP IN POISSON'
stop

endif
em = sq~y+pmean
if((em hl. 0.) .or. (em .gt. maxint)) go to 1
em = mnt(em)

t = 0.9*(.+y**2)exp(em~aba-gammln(em+ 1.)-
+ pexpmean)

ff(uniform(iseed).gt.t) go to 1
endif

poisson = em

return

end
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REAL FUNCTION UNIFORM(seed)

integer*4 seed

c Summary of purpose

c implements a multiplicative linear congruential generator generates random
c numbers uniformly distributed on the open interval 0.0 to 1.0 (0 and 1 are NOT
c included)

c Author

c from "Random Number Generators: Good Ones Are Hard to Find," Stephen
c K. Park and Keith W. Miller, Communications of the ACM, October 1988, Vol
c 31, No 10, pp 1192 - 1201 routine is listed on p 1195

c modifications

c 4/11/89 erik m johansson - modified code to use less computational steps.
c Equations used are from the article "Efficient and Portable Combined Random
c Number Generators," Pierre L'Ecuyer, Communications of the ACM, June
c 1988, Vol 31, No 6, at the top of p745.

c (c) Copyright 1989 the Regents of the University of California. All rights
c reserved.

c This software is a result of work performed at Lawrence Livermore National
c Laboratory. The United States Government retains certain rights therein.

integer*4 a, m, q, r

parameter (a = 16807)
parameter (m = 2147483647)
parameter (q = 127773)
parameter (r = 2836)

real h
parameter (h = 1. / 2147483647.)
integer*4 k
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c The function

k = seed / q
seed = a * (seed -k * q) -k *r
if (seed .It. 0) seed = seed + m
uniform = seed * h
return
end
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APPENDIX H. PHASE ERROR AND LOW PASS FILTER PROGRAM

c THIS PROGRAM WAS DEVELOPED BY THE THESIS AUTHOR AND
c DEVELOPS A LOW PASS FILTER IN THE FREQUENCY
c DOMAIN TO FILTER THE RECONSTRUCTED OBJECT DATA FILE
c FOR BOTH THE KNOX-THOMPSON AND TRIPLE-CORRELATION
c METHODS. ADDITIONALLY, THIS PROGRAM DETERMINES THE
c AZIMUTHAL RMS PHASE ERROR FOR THE INPUT FOURIER
c SPECTRA.

c THE FOLLOWING SUBROUTINES ARE REQUIRED FROM
c UNIVERSAL SUBROUTINES IN APPENDIX D:

c Complexconj
c FFT
c FFT2D
c NormFFT
c Quadswap

c AUTHOR: LT JAMES M. LACKEMACHER
c COMPL DATE: 26 OCTOBER 1990
c REASON: COMPLETE REQUIREMENTS FOR A MASTERS
c DEGREE IN PHYSICS
c GOAL: SIMULATE OBJECT, DEGRADE OBJECT,
c RECONSTRUCT OBJECT USING KNOX-THOMPSON
c AND TRIPLE-CORRELATION METHODS FILTER
c THE DATA THE COMPARE THE TWO METHODS.

PROGRAM FREQFILTER

MAIN PROGRAM COMPLEX VARIABLE LIST

c BSDATA n x n DIM ARRAY REPRESENTING THE INPUT
c TRIPLE-CORRELATION RECONSTRUCTED OBJECT IN
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c FREQUENCY SPACE
c BSLP n x n DIM ARRAY REPRESENTING THE LOW PASS
c FILTERED TRIPLE-CORRELATION RECONSTRUCTED
c OBJECT IN FREQUENCY SPACE
c F n DIM ARRAY USED IN THE FOURIER TRANSFORM
c KTDATA n x n DIM ARRAY REPRESENTING THE INPUT
c KNOX-THOMPSON RECONSTRUCTED OBJECT IN
c FREQUENCY SPACE
c KTLP n x n DIM ARRAY REPRESENTING THE LOW PASS
c FILTERED KNOX-THOMPSON RECONSTRUCTED
c OBJECT IN FREQUENCY SPACE
c TEMPDATA n x n DIM ARRAY THAT IS USED AS A TEMPORARY
c ARRAY IN THE FOURIER TRANSFORM
c TRUDATA n x n DIM ARRAY REPRESENTING THE TRUTH DATA

c MAIN PROGRAM REAL VARIABLE LIST

c bserror n x n DIM ARRAY THAT REPRESENTS THE SQUARE
c PHASE ERROR FOR THE TRIPLE-CORRELATION
c RECONSTRUCTED IMAGE
c bslpmod n x n DIM ARRAY THAT REPRESENTS THE MODULUS
c OF THE LOW PASS FILTERED TRIPLE-CORRELATION
c RECONSTRUCTED IMAGE
c bsr n/2 DIM ARRAY THAT REPRESENTS THE RADIAL
c FREQ VALUE IN INVERSE ARCSECONDS FOR THE
c TRIPLE-CORRELATION IMAGE
c bssnr n/2 DIM ARRAY THAT REPRESENTS THE INPUT SNR
c VALUES OF TRIPLE-CORRELATION IMAGE
c bstrunc TRIPLE-CORRELATION RADIALTRUNCATION VALUE
c kterror n x n DIM ARRAY THAT REPRESENTS THE SQUARE
c PHASE ERROR FOR THE KNOX-THOMPSON
c RECONSTRUCTED IMAGE
c ktlpmod n x n DIM ARRAY THAT REPRESENTS THE MODULUS
c OF THE LOW PASS FILTERED KNOX-THOMPSON
c RECONSTRUCTED IMAGE
c ktr n/2 DIM ARRAY THAT REPRESENTS THE RADIAL
c FREQ VALUE IN INVERSE ARCSECONDS FOR THE
c KNOX-THOMPSON IMAGE
c ktsnr n/2 DIM ARRAY THAT REPRESENTS THE INPUT SNR
c VALUES OF KNOX-THOMPSON IMAGE
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c kttrunc KNOX-THOMPSON RADIAL TRUNCATION VALUE
c lambda WAVELENGTH OF QUASI-MONOCHROMATIC LIGHT
c rBSerror n/2 DIM ARRAY THAT REPRESENTS THE AZIMUTHAL
c RMS PHASE ERROR OF THE TRIPLE-CORRELATION
c RECONSTRUCTED IMAGE
c rKTerror n/2 DIM ARRAY THAT REPRESENTS THE AZIMUTHAL
c RMS PHASE ERROR OF THE KNOX-THOMPSON
c RECONSTRUCTED IMAGE
c RO COHERENCE LENGTH

c MAIN PROGRAM INTEGER VARIABLE LIST

c fwd VALUE OF 1 FOR FORWARD FFT
c iktcount NUMBER OF KT PIXELS WITH SNR GREATER THAN 1.0
c inv VALUE OF -1 FOR INVERSE FFT
c itccount NUMBER OF TC PIXELS WITH SNR GREATER THAN 1.0
c In 2 "In FOR USE WITH FFT SUBROUTINE
c n DIMENSION OF ONE SIDE OF 2-DIM ARRAY
c nyquist EQUAL TO THE TELESCOPE PUPIL FUNCTION
c DERIVED FROM THE FOLLOWING FORMULA:
c nyquist = (telescope diameter x number of pixels/rO)/rO
c numpix THE NUMBER OF PIXELS PER RO

c MAIN PROGRAM INTEGER VARIABLE LIST

c end CHAR INPUT TO DETERMINE WHETHER TO STOP THE
c PROGRAM
c mean CHAR INPUT TO DETERMINE WHETHER TO FIND THE
c AMSPE
c rite CHAR INPUT TO DETERMINE WHETHER TO WRITE
c DATA TO FILE
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MAIN PROGRAM

PARAMETER(n=64ln=6,fwd= 1,inv=-1)

COMPLEX*16 KTDATA(n,n), BSDATA(n,n), TEMPDATA(nn),
+ F(n), KTLP(nn), BSLP(n,n), TRUDATA(n,n)

REAL*8 ktlpmod(nn), bslpmod(n,n), kterror(nn),
+ bserror(n,n), rKTeffor(nt2), rBSerror(nt2),
+ ktsnr(nt2), bssnr(n12)

REAL ktr(nt2), bsr(n/2), kttrunc, bstrunc, lambda

CHARACTER*1 mean, end, rite

c INPUT THE DATA

CALL Readfle(KTDATABSDATAn)
W~M,*)MNTER NYQUIST VALUE:'
READ(*,*)nyquist
WRITE(*,*)"
iflF4**)vETER THE NUMBER OF PIXELS PER RO:'
READ(*,*) numpix

WRT(,*'NE RO VALUE IN METERS:'
READ(*,*) RO

WRITE **)TNTEhR WAVELENGTH VALUE IN METERS:'
RIEAD(* *) lambda

CALL Readsnr(ktsnrbssnrktr,bsrnyquistn)

c LOW PASS FILTER BASED ON RADIAL TRUNCATION VALUE
c DETERMINED FROM SNR DATA

CALL Truncval(ktsnrktr,kttruncnyquist,iktcountn)
WRITE(*,*)'KT RADIAL TRUNCATION VALUE IS:'

VTRHTE(*,*) kttrunc,'1/ARCSEC.'
lWfl7(**)'VAL1JE5 GREATER THAN THIS RADIUS'
WRITE(*,*)'WILL BE TRUNCATED.'
VWRIT'E(*,*)t
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CALL Truncval(bssnrbsrbstruncnyquistitccountn)
WRniE(*,*)1TC RADIAL TRUNCATION VALUE IS:'
WRlTE(,) bstruc,'1/ARCSEC.'

WRnMW(*,*)'V/ALIJE5 GREATER THAN THIS RADIUS'
wRITE(*,*) WILL BE TRUNCATED.'

c TRUNCATE THE DATA

CALL Truncate(KTDATAKTLPkttrunclambdaROnumpixn)
CAL.L Tnuncate(BSDATABSLPbstrunc1ambdaRnumpixn)

c INVERSE FTr THE DATA AFTER FILTERING

CALL FFr2D(KTLPTEMPDATAF,invn)
CALL FFT2D(BSLP,TEMPDATAFhlninvn)

c DETERMINE THE MODULUS OF THE DATA IN IMAGE SPACE

CALL Modulus(ktlpznod,KTLP,n)
CALL Modulus(bslpmodBSLP,n)

c NORMALIZE THE MODULI FOR PLOTITING

CALL Normalize(ktlpmodn)
CALL Nornialize(bslpmodn)

c WRITE THE MODULUS TO A FILE FOR PLOTTING IF DESIRED

20 WRITE(*,*)'WRITE MODULUS TO A FILE? (YIN)'
R.EAD(* *)rite
WRfl-E( * *)

IF ((rite.NE.'Y).AND.(rite.NE.y).AND.
+ (rite.NE.'N').AND.(rite.NE.'n')) THEN

WRITE(*,*) TERROR, REENTER.'

GOTO 20
ENDIF
IF ((rite.EQ.'Y').OR.(rite.EQ.'y')) THEN

CALL Writefile(ktlpmodbslpmod,numpixlambda,ROn)
ENDIF
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c DETERMINE THE AZIMUTHAL RMS PHASE ERROR

30 WRITE(*,) TFIND THE AZIMUTHAL RMS PHASE ERROR? (YIN)'
READ(*,*)mlean

IF ((mean.NE.'Y).AN.(mean.NE.'y').AND.
+ (mean.NE.'N').AND.(mean.NE.'n')) THEN

WRIT(*,*)'ERROR, REENTER.'

GOTO 30
ENDIF
IF ((mean.EQ.'Y').OR.(mean.EQ.'y')) THEN

c READ IN DATA

CALL Readtrufile(TRUDATAn)

c DETERMINE SQUARE PHASE ERROR

CALL AMSPE(KTDATABSDATATRUDATA,
+ kterror,bserror,nyquistr

c DETERMINE AZIMUTHAL AVERAGE OF THE RMS PH4ASE ERROR

CALL AMSPEcalc(kterror,bserror,rKTerrorrBSerror,
+ nyquistn)

c WRITE AMSPE TO A FILE FOR EACH CORRELATION TECHNIQUE

CALL Writerrfile(rKTerror,rBSerror,nyquistlambda,
+ RO,numpixiktcount,itccountn)

ENDIF

STOP

END
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SUBROUTINE LIST

SUBROUTINE AMSPE(KTDATABSDATATRUDATA,
+ kterrorbserrornyquistn)

c THIS S/R CALCULATES THE SQUARE PHASE ERROR OF THE
c RECONSTRUCTED PHASES

COMPLEX*16 KTDATA(n,n), BSDATA(n,n), TRUDATA(n,n)
REAL*8 kterror(n,n), bserror(nn), truphase, ktphase,
+ bsphase, pi, pi2
pi = dacos(-1.OD+00)
pi2 =2 * pi
n2pl= n/2+ I
DO 10 i = 1, n

DO 10j = 1, n
x = floatoj - (n2pl))
y = float((n2pl) - i)
radius = sqrt(x**2.0 + y**2.0)
IF (radius.LE.nyquist) THEN

truphase =datan2(DIAG(TRUDATA(ij)),

+ DREAL(TRUDATA(ij)))
ktphase =datan2(DIMAG(KT DATA(ij)),

+ DREAL(KTDATA(ij)))
bsphase =datan2(DLMAG(BSDATA(ij)),

+ DREAL(BSDATA(ij)))
20 IF (truphase.GT.pi2) THEN

truphase = truphase - pi2
GOTO 20

ENDIF
30 IF (truphase.LT.-pi2) THEN

truphase = truphase + pi2
GOTO 30

ENDIF
40 IF (ktphase.GT.pi2) THEN

ktpbase = ktphase - pi2
GOTO 40

ENDIF
50 IF (ktphase.LT.-pi2) THEN

ktphase = ktphase + pi2
GOTO 50

ENDIF
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60 IF (bsphase.GT.pi2) THEN
bsphase = bsphase - pi2
GOTO 60

ENDIF
70 IF (bsphase.LT.-pi2) THEN

bsphase = bsphase + pi2
GOTO 70

ENDIF
kterror(ij) = truphase - ktphase

80 IF (kterror(ij).GT.pi2) THEN
kterror(ij) = ktefror(ij) - pi2
GOTO 80

ENDIF
90 IF (ktefror(ij).LT-pi2) THEN

kter-.or(ij) = kterror(ij) + pi2
GOTO 90

ENDIF
IF (kterror(ij).GT.pi)

+ kterror(ij) = kterror(ij) - pi2
IF (kterror(ij).LT.-pi)

+ kterror(ij) = kterror(ij) + pi2
kterror(ij) = (kteffor(ij))**2.0

bserror(ij) = truphase - bsphase
100 IF (bserror(ij).GT.pi2) THEN

bscrror(ij) = bsefror(ij) - pi2
GOTO 100

ENDIF
110 IF (bserror(ij).LT.-pi2) THEN

bserror(ij) = bserror(ij) + pi2
GOTO 110

ENDIF
IF (bserror(ij).GT.pi)

+ bserror(ij) = bserror(ij) - pi2
IF (bserror(ij).LT.-pi)

+ bserror(ij) = bserror(ij) + pi2
bserror(ij) = (bserror(ij))**2.0

ENDIF
10 CONTINUE

RETURN
END
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SUBROUTINE AMSPEcalc(kterrorbserrorrK~error,
+ rBSerrornyquistn)

c THIS S/R CALCULATES THE RMS PHASE ERROR AS A FUNCTION OF
c RADIUS

REAL*8 kterror(nn), bserror(nn), rKTerror(nt2),
+ rBSerror(n/2)
INTEGER r
n2pl =n/2 +I
DO 10 r = 0, nyquist

nerr = 0
DO 20 i = 1, n

DO 20j = 1, n
x = floatoj - (n2pl))
y = float((n2pl) - i)
radius = sqrt(x**2.0 + y**2.0)
IF ((radius.GE.float(r)).AND.

+ (radius.LT.float(r+ 1))) THEN
nerr = nerr + 1
rKTerror(r) =rKTerror(r) + kterror(ij)
rBSeffor(r) =rBSerror(r) + bserror(ij)

ENDIF
20 CONTINUE

rKTerror(r) =dsqrt(rKTerror(r)/neff)

rBSerror(r) =dsqrt(rBSeffor(r)/nerr)

10 CONTINUE
RETURN
END

SUBROUTINE Modulus(mod,DATAn)

c THIS S/R DETERMINES THE MODULUS OF A COMPLEX NUMBER

COMPLEX* 16 DATA(n,n)
REAL*8 mod(n,n)
DO 10 i = 1, n

DO 10j = 1, n
mod(ij) = ABS(DATA(ij))

10 CONTINUE
RETURN
END
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SUBROUTINE Normalize(datan)

c THIS S/R NORMALIZES THE OUTPUT DATA TO 1.0.

REAL*8 data(nn), maxval
maxval = 0.OD+00
DO 10 i = 1, n

DO 10j = 1, n
IF (data(ij).GT.maxval) maxval f data(ij)

10 CONTINUE
DO 20 i = 1, n

DO 20j = 1, n
data(ij) = data(ij)/maxval

20 CONTINUE
RETURN
END

SUBROUTINE Readfile(KTDATABSDATAn)

c THIS S/R READS THE RECONSTRUCTED DATA FROM A FILE

COMPLEX16 KTDATA(n,n), BSDATA(n,n)
CHARACTER* 16 ktfile, bsfileWRITE(*?*)"
WRITE(*,*)'NTER INPUT KT RECON FILE NAME (16 CHAR'
WRITEC*,*)?vAX):'

READ (*,30) ktfile
WRITE(*,*)"
WRITE(*,*)'ENTER INPUT TC RECON FILE NAME (16 CHAR'

WRITE(*,*)'MAX):'
READ (*,30) bsfile
WRITE(*,*)"
OPEN(UNIT=40,FILE=ktfile,STATUS='OLD')
OPEN(UNIT=50,FILE=bsfile,STATUS='OLD')
DO 10 i = 1, n

DO 10j = 1, n
READ(40,*) KTDATA(ij)

10 CONTINUE
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DO" 20 i = 1, n
DO 20j = 1, n

READ(50,*) BSDATA(ij)
20 CONTINUJE
30 FORMAT(A16)

RETURN
END

SUBROUTINE Readsnr(ktsnrbssnrktrbsrnyquistn)

c THIS S/R READS THE SNR DATA FROM A FILE

REAL*8 ktsnr(nt2), bssnr(n/2)
REAL ktr(nt2), bsr(nt2)
CHARACIER*16 ktsnrfile, bssnrfile
Wn[*,*)ENTflR KT SNR FILE NAME (16 CHAR MAX):'
READ (*,30) ktsnrflle
WRITE(*, *)'I
WR1TE*,*YENTER TC SNR FILE NAME (16 CHAR MAX):
READ (*,30) bssnrfile
'WPJTE*,*)''I
OPEN(UNIT=40,FIL=ktsnrfile,STATUS= 'OLD')
OPEN(UNIT= 50,FILE=bssnrfile,STATUS='O]LD')
DO 10 i = 1, nyquist

READ(40,*) ktr(i), ktsnr(i)
10 CONTINUE

DO 20 i = 1, nyquist
RFEAD(50,*) bsr(i), bssnr(i)

20 CONTINUE
30 FORMAT(A16)

RETURN
END

SUBROUTINE Readtrufile(TRUDATAn)

c THIS S/R READS THE TRUTH DATA FROM A FILE

COMPLEX 16 TRUDATA(n,n)
CHARACTER*16 file

W~n(*,)MNERINPUT TRUTH DATA FILE NAME (16 CHAR'
WRITE(*,*)'MAX):'
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READ (,20) file
WRITE(* *Y )2
OPEN(UNIT=30,FlLE=fie,STATUS= 'OL.D')
DO 10 i = 1, n

DO 10j = 1, n
READ(30,*) TRUDATA(ij)

10 CONTINUE
20 FORMAT(A16)

RETURN
END

SUBROUTINE Truncate(DATALPDATAtrunclambda,
+ R0,numpixn)

c THIS S/R FILTERS THE OBJECT SPECTRUM ARRAY BY
c TRUNCATING THE ARRAY AT A RADIUS SET BY THE SNR VALUE
c GREATER THAN 1

COMPLEX*16 DATA(n,n), LPDATA(nn)
REAL lambda
n2= n/2
n2pl = n2 + 1
pi = acos(-l.OE+00)
DO 10 i = 1, n

DO 10j = 1, n
x = floatoj-n2pl)
y = float(i-n2pl)
rad = sqrt(x**2 + y'!*2) * numpix *(IambdalR0)*

+ (180.0/pi) * 3600.0
IF (rad.LE.trunc) THEN

LPDATA(ij) = DATA(ij)
ELSE

LPDATA(ij) = (0.0,0.0)
ENDIF

10 CONTINUE
RETURN
END
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SUBROUTINE Truncval(snrrtruncnyquist~icountn)

c THIS S/R DETERMINES THE TRUNCATION VALUE BASED ON THE
c SNR. THE VALUE IS BASED ON THE POINT AT WHICH THE SNR IS
c UNITY OR GREATER.

REAJ..*8 snr(n/2)
REAL r(n/2)
j= I
DO 10 i = 1, nyquist

IF ((snr(i).GE.1.OD +00).AND.(j.EQ.i)) THEN
trunc =r(i)

icount =j

j = j+I
ENDIF

10 CONTINUE
RETURN
END

SUBROUTINE Writefile(ktlpdata,bslpdata,numpix,

+ lambdaRO,n)

c THIS S/R WRITES THE DATA TO A FILE

REAL*8 ktlpdata(n,n), bslpdata(nn)
REAL cony, lambda, RO, x, y
CHARACTER* 16 ktlpfle, bslpfile
pi = acos(-1.OE+00)
WRITE(*,*)'ENTER OUTPUT KT FILE NAME (16 CHAR MAX):'
READ (*,50) ktlpfile
WRITE(*,*)"
WRITE(* *)'ENTER OUTPUT TC FILE NAME (16 CHAR MAX):'
READ (*,50) bslpffle

WOPE(U,*)' '0FL=klfleSA 'E'
OPEN(UNIT= 30,FILE= ktlpfile,STATUS = 'NEW)

DO 10 i = 1, n
DO 10j 1- 1, n

cony = float(numpix) * (lambdalRO)*
+ (180.0/pi) * 3600.0

x = floatoj - (n/t2+ 1)) * conv/float(n)
y = float(i - (n/2+ 1)) * conv/float(n)
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WR1TE(30,60) x, y, ktlpdata(ij)
10 CONTINUE

DO 20 i = 1, n
DO 20j = 1, n

conv = float(numpix) * (lambdalR0)
+ (180.0/pi) *3600.0

x = floatoj - (n/2+ 1)) * conv/float(n)
y = float(i - (n/2+ 1)) * convlfloat(n)
WR1TE(40,60) x; y, bslpdata(ij)

20 CONTINUE
50 FORMAT(A16)
60 FORMAT(F7.4,2xF7.4,2xF7.4)

RETURN
END

SUBROUTINE Writerrfile(rKTerrorrBSerrornyquist,
+ lambdaRO,numpixiktcount,
+ itccount,n)

c THIS S/R WRITES THE ERROR DATA TO A FILE

REAV*8 rKTerror(n/2), rBSerror(nt2)
REAL;x y, lambda
CHARACr7ER*16 ktffle, bstile
INTEGER r
pi = acos(-1.0+00)
WRITE(*,)MNTER OUTPUT KT ERROR FILE NAME (16 CHAR'

READ (*,30) ktfile
WArrTE(,)9 "

WRrTE(*,*YENTER OUTPUT TC ERROR FILE NAME (16 CHAR'
WRITE(*,*)?MAX):)
READ (',30) bsfile

OPEN(UNIT= 1,FLLE= ktfile,STATUS = 'NEW)
OPEN(UJNIT=2,FILE-=bsfile,STATUS ='NEW)
DO 10 r= 1, iktcount

x = r * numpix * (Iambda/RO) *(180.0/pi) *3600.0

WRrrE(1,*) x, rKTerror(r)
10 CONTINUE
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DO 20 r = 1, itccount
x = r *numpix * (Iambda/RO) *(180.0/pi) *3600.0
WRITE2,*) x, rBSerror(r)

20 CONTINUE
30 FORMAT(A16)

RETURN
END
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